教案中应包括教案名称、教学目标、教学内容、教学方法、教学手段等元素。教案的编写要符合教学大纲和教材的内容安排。这些教案范文包括了不同学段、不同学科的示范性教学设计。
高一数学教案篇一
(2)理解任意角的三角函数不同的定义方法;。
(4)掌握并能初步运用公式一;。
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.
任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.
本节利用单位圆上点的`坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.
教学重难点。
重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.
高一数学教案篇二
突出重点.培养能力.。
三、课堂练习。
教材第13页练习1、2、3、4.。
【助练习】第13页练习4(1)中用一个方向的斜平行线段表示,用另一方向的平行线段表示如图:
凡有阴影部分即为所求.。
四、小结。
提纲式(略).再一次突出交集和并集两个概念中“且”,“或”的含义的不同.。
五、作业。
习题1至8.。
笔练结合板书.。
倾听.修改练习.掌握方法.。
观察.思考.倾听.理解.记忆.。
倾听.理解.记忆.。
回忆、再现内容.。
落实。
介绍解题技能技巧.。
内容条理化.。
课堂教学设计说明。
2.反演律可根据学生实际酌情使用.。
高一数学教案篇三
1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质。
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
高一数学教案篇四
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
高一数学教案篇五
教学目标:
(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:
(1)重点:了解集合的含义与表示、集合中元素的特性。
(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:
[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。理解集合与元素的关系。
[设计意图]引出并介绍列举法。
【问题6】例1的讲解。同学们能用列举法表示不等式x—73的解集吗?
【问题7】例2的讲解。请同学们思考课本第6页的思考题。
[设计意图]帮助学生在表示具体的集合时,如何从列举法与描述法中做出选择。
【问题8】请同学们总结这节课我们主要学习了那些内容?有什么学习体会?
[设计意图]学习小结。对本节课所学知识进行回顾。
布置作业。
高一数学教案篇六
本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1)、、各等于什么?
2)、、各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
对比、归纳、总结
1.重点:理解并掌握二次根式的性质
2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
1课时
五、教b具学具准备
投影仪、胶片、多媒体
复习对比,归纳整理,应用提高,以学生活动为主
一、导入新课
我们知道,式子()表示非负数的算术平方根.
问:式子的意义是什么?被开方数中的表示的是什么数?
答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1);(2);(3);
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
高一数学教案篇七
《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
该内容在《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;
3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培养学生合作交流的能力以及收集和处理信息的能力。
【课堂准备】。
1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。
3.分配任务:根据个人情况和优势,经小组共同商议,由组长确定每人的具体任务。
4.搜集资料:针对所选题目,通过各种方式(相关书籍----《函数在你身边》、《世界函数通史》、《世界著名科学家传记》等;搜集素材,包括文字、图片、数据以及音像资料等,并记录相关资料,写出实习报告。
6.把各组的实习报告,贴在班级的学习栏内,让学生学习交流。
【教学过程】。
1.出示课题:交流、分享实习报告。
2.交流、分享:(由数学科代表主持。小组推荐中心发言人;以下记录均为发言概述)。
(1)学生1:函数小史。
数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用。有些重要的数学概念对数学分支的产生起着奠定性的作用。我们刚学过的函数就是这样的重要概念。在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域。最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨。最初莱布尼茨用“函数”一词表示幂。1755年,瑞士数学家欧拉把给出了不同的函数定义。中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的。我们可以预计到,关于函数的争论、研究、发展、拓广将不会完结,也正是这些影响着数学及其相邻学科的发展。
(2)教师带头鼓掌并简单评价。
(3)学生2:函数概念的纵向发展:
变革,形成了函数的现代定义形式。
(4)教师带头鼓掌并简单评价。
(5)学生3:我国数学家李国平与函数。
学生3描述了数学家中国科学院数学物理学部委员.李国平(1910—1996),的身世和他的成长历程。李国平1933年毕业于中山大学数学天文系。后历任中国科学院数学计算技术研究所所长,中国科学院武汉数学物理研究所所长,中国数学会理事,中国科学院学部委员等职务。学生还通俗地讲述了李国平先生在微分方程复变函数论领域的卓越贡献。
(6)教师带头鼓掌并简单评价。
(7)学生4:函数概念对数学发展的影响。
(8)教师带头鼓掌并简单评价。
(9)学生5:函数概念的历史演变过程。
上述函数概念的历史演变过程,就是一系列弱抽象的过程.学生展示了下表:早期函数概念。
代数函数。
函数是这样一个量,它是通过其它一些量的代数运算得到的。
近代函数概念。
映射函数。
18世纪函数概念。
解析函数。
函数是指由一个变量与一些常量通过任何方式形成的解析表达式。
19世纪函数概念。
变量函数。
对于给定区间上的每一个x值,y总有唯一确定的值与之对应,则称y是x的函数.。
(10)教师带头鼓掌并简单评价。
3.课堂小结:
4.实习作业的评定:
高一数学教案篇八
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、
高一数学教案篇九
学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!
教学目标。
1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的。
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项。
2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。
3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。
教学建议。
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。
(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。
上述提供的高一数学教案:数列希望能够符合大家的实际需要!