当前位置:网站首页 >> 文档 >> 初三数学知识点归纳图(优秀20篇)

初三数学知识点归纳图(优秀20篇)

格式:DOC 上传日期:2024-01-13 06:02:31
初三数学知识点归纳图(优秀20篇)
    小编:admin

养成一个良好的学习习惯是提高成绩的关键。阅读优秀的范文可以帮助我们拓展写作思路,提高写作水平。总结范文可以帮助我们更好地理解总结的目的和要点,从而写出更好的总结。

初三数学知识点归纳图篇一

全套教科书包含了课程标准(实验稿)规定的数与代数空间与图形统计与概率实践与综合应用四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。

九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,

学习。

内容涉及到了《课程标准》的四个领域。本册书内容分析如下:

第21章二次根式。

学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式一章就来认识这种式子,探索它的性质,掌握它的运算。

在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

并运用它们进行二次根式的化简。

二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

第22章一元二次方程。

学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

第23章旋转。

学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。

23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。

23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。

23.3课题学习图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。

第24章圆。

圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。

24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。

24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。

24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。

24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。

第25章概率初步。

将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。

25.1概率一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。

25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。

25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。

25.4课题学习键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。

初三数学知识点归纳图篇二

鉴于数学知识点的重要性,小编为您提供了这篇初三数学实数知识点总结归纳,希望对同学们的数学有所帮助。

2.无理数:无限不循环小数叫做无理数。一个数是无理数应当满足三个条件:(1)是小数;(2)是无限小数;(3)是不循环小数。

3.实数的运算:(1)要掌握加、减、乘、除、乘方、开方的运算法则

(2)能灵活应用五个运算定律(加法交换律,加法结合律; 乘法交换律,乘法结合律,乘法对加法的分配律)

(3)清楚实数混合运算的顺序:依然是从高级运算到低级运算,同级运算从左到右的顺序进行,有括号的先算括号里面的.。

常见考法

实数的分类及无理数在段考,以及中考中均有出现,主要考查的是无理数的判别、实数的简单运算等。单独考查时,题型以选择、填空为主。

这篇初三数学实数知识点总结归纳是精品小编精心为同学们准备的,祝大家学习愉快!

初三数学知识点归纳图篇三

为了让学习的目的更加明确,需要合理安排学习时间,不慌不忙,稳打稳扎,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。

我们不要笼统地埋怨自己解题时“粗心”,而应该把做错的题目研究一下,是不是因为注意力不集中,顾此失彼;或者审题马虎,误解题意;或者记错概念、公式、定理;或者是心急慌忙,随意跳步骤,造成运算错误等等。

只要找到根源,就能做到不让同一错误出现第二次;只要把所有会做的题目都做对,就能取得优良成绩。

数学学习往往是通过做作业达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。学生在做作业时应该注意以下四点,从而提高学习效率。首先,先复习后做作业。在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。

要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决一些问题。

课外学习是课内学习的补充和继续,包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展学生的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。

初三数学知识点归纳图篇四

把一个图形绕着某一点o转动一个角度的图形变换叫做旋转,点o叫做旋转中心,转动的角叫做旋转角.

旋转三要素:旋转中心、旋转方面、旋转角

(1)旋转前后的两个图形是全等形;

(2)两个对应点到旋转中心的距离相等

(3)两个对应点与旋转中心的连线段的夹角等于旋转角

把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

(2)关于中心对称的两个图形是全等图形.

把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

两个点关于原点对称时,它们的坐标符号相反,

即点p(x,y)关于原点o的对称点p(-x,-y)。

初三数学知识点归纳图篇五

仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

当一个单项式的系数是1或—1时,“1”通常省略不写。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

有有限个单项式的代数和组成的式子,叫做多项式。

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

单项式可以看作是多项式的特例

把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。

性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。

一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。

多项式的加、减法,乘法

1、多项式的加、减法

2、多项式的乘法

单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

3、多项式的乘法

多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

常用乘法公式

公式i平方差公式

a+ba—b=a^2—b^2

两个数的和与这两个数的差的积等于这两个数的平方差。

初三数学知识点归纳图篇六

式子叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

2、最简二次根式。

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式。

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式的性质。

5、二次根式混合运算。

二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

一、一元二次方程。

1、一元二次方程。

含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式。

它的特征是:等式左边十一个关于未知数x的二次多项式等式右边是零其中叫做二次项a叫做二次项系数;bx叫做一次项b叫做一次项系数;c叫做常数项。

二、一元二次方程的解法。

1、直接开平方法。

2、配方法。

配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其。

3、公式法。

4、因式分解法。

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

三、一元二次方程根的判别式。

根的判别式。

四、一元二次方程根与系数的关系。

一、旋转。

1、定义。

把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。

2、性质。

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称。

1、定义。

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质。

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定。

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形。

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

坐标系中对称点的特征:

1、关于原点对称的点的特征。

两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(-x,-y)。

2、关于x轴对称的点的特征。

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,-y)。

3、关于y轴对称的点的特征。

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点p(x,y)关于y轴的对称点为p’(-x,y)。

初三数学知识点归纳图篇七

一、回归课本,夯实基础,做好预习。

而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。

二、提高课堂听课效率,多动脑,勤动手。

体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,事半功倍。此外对于老师讲课中的难点,重点要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的`记录,以便复习,消化,思考。

三、

建立错题本,查漏补缺。

初三复习,各类试题要做几十套,甚至上百套。人。

教学。

习网的特级教师提醒学生可以建立一个错题本,把平时做错的题系统的整理好,在上面写上评析和做错的原因,每过一段时间,就把“错题笔记”拿出来看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三,融会贯通”,及时归纳总结。每次订正试卷或作业时,在错题旁边要写明做错的原因。

四、抓住关键,突出重点,不以题量论英雄。

学好数学要做大量的题,但反过来做了大量的题,数学不一定好。“不要以题量论英雄”,题海战术,有时候往往起到事倍功半的效果,因此要提高解题的效率。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,但是要有针对性地做题,突出重点,抓住关键。复习中,所谓突出重点,主要是指突出教材中的重点知识,突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。数学思想与方法是数学的精髓,是联系数学中各类知识的纽带。要抓住教材中的重点内容,掌握分析方法,从不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。培养正确地把日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。

五、要养成良好的解题习惯。

如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学),自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是初三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。

六、提高复习兴趣,克服“高原现象”。

高原现象在数学复习阶段表现得十分明显。平时授新课,新鲜有趣;

另一方面,要以“新”提高复习的积极性。诸如制订新的复习计划;

采用灵活的复习方法;

抓住新颖有趣的内容和习题,把知识串连起来,使书“由厚变薄”。

初三数学知识点归纳图篇八

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点3:相似三角形的概念。

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.

考点4:相似三角形的判定和性质及其应用。

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.

考点5:三角形的重心。

考核要求:知道重心的定义并初步应用.

考点6:向量的有关概念。

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。

考核要求:掌握实数与向量相乘、向量的线性运算。

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.

考点9:解直角三角形及其应用。

考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.

考点11:用待定系数法求二次函数的解析式。

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.

注意求函数解析式的步骤:一设、二代、三列、四还原.

考点12:画二次函数的图像。

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.

考点13:二次函数的图像及其基本性质。

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.

注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.

考点14:圆心角、弦、弦心距的概念。

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.

考点15:圆心角、弧、弦、弦心距之间的关系。

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.

考点16:垂径定理及其推论。

垂径定理及其推论是圆这一板块中最重要的知识点之一.

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系。

直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.

考点18:正多边形的有关概念和基本性质。

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.

考点19:画正三、四、六边形.

考核要求:能用基本作图工具,正确作出正三、四、六边形.

考点20:确定事件和随机事件。

考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件.

考点21:事件发生的可能性大小,事件的概率。

考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.

考点22:等可能试验中事件的概率问题及概率计算。

本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.

在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整.

考点23:数据整理与统计图表。

本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.

考点24:统计的含义。

本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法.

考点25:平均数、加权平均数的概念和计算。

本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.

考点26:中位数、众数、方差、标准差的概念和计算。

考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.

注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序.

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图。

考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.

考点28:中位数、众数、方差、标准差、频数、频率的应用。

本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.

初三数学知识点归纳图篇九

1.两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“sas”。

2.两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“asa”。

3.两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“aas”。

4.两个三角形对应的`三条边相等,两个三角形全等,简称“边边边”或“sss"。

5.两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“hl”。

注意,证明三角形全等没有“ssa”或“边边角”的方法,即两边与其中一边的对角相等无法证明这两个三角形全等,但从意义上来说,直角三角形的“hl”证明等同“ssa”。

初三数学知识点归纳图篇十

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3:相似三角形的概念。

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4:相似三角形的判定和性质及其应用。

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5:三角形的重心。

考核要求:知道重心的定义并初步应用。

考点6:向量的有关概念。

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。

考核要求:掌握实数与向量相乘、向量的线性运算。

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点9:解直角三角形及其应用。

考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。

考点11:用待定系数法求二次函数的解析式。

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。

注意求函数解析式的步骤:一设、二代、三列、四还原。

考点12:画二次函数的图像。

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像。

考点13:二次函数的图像及其基本性质。

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式。

考点14:圆心角、弦、弦心距的概念。

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

考点15:圆心角、弧、弦、弦心距之间的关系。

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

考点16:垂径定理及其推论。

垂径定理及其推论是圆这一板块中最重要的知识点之一。

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系。

直线与圆的位置关系可从与之间的关系和交点的.个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

考点18:正多边形的有关概念和基本性质。

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

考点19:画正三、四、六边形。

考核要求:能用基本作图工具,正确作出正三、四、六边形。

考点20:确定事件和随机事件。

考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点21:事件发生的可能性大小,事件的概率。

考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。注意:(1)在给可能性的大小排序前可先用"一定发生"、"很有可能发生"、"可能发生"、"不太可能发生"、"一定不会发生"等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点22:等可能试验中事件的概率问题及概率计算。

本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画"树形图"方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画"树形图"方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点23:数据整理与统计图表。

本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点24:统计的含义。

本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点25:平均数、加权平均数的概念和计算。

本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点26:中位数、众数、方差、标准差的概念和计算。

考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序。

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图。

考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

考点28:中位数、众数、方差、标准差、频数、频率的应用。

本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

初三数学知识点归纳图篇十一

用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影

有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影(parallelprojection).

(3)中心投影

由同一点(点光源发出的光线)形成的投影叫做中心投影(centerprojection)。

(4)正投影

投影线垂直于投影面产生的投影叫做正投影。注:物体正投影的形状、大小与它相对于投影面的位置有关。

(1)三视图

是指观测者从三个不同位置观察同一个空间几何体而画出的图形。将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。

(2)特点

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

初三数学知识点归纳图篇十二

(1)任意两个正数的和的平方,等于这两个数的平方和。

(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍。

3、平方根。

1正数有两个平方根,这两个平方根互为相反数;

2零只有一个平方根,它就是零本身;

3负数没有平方根。

4、实数。

无限不循环小数叫做无理数。

有理数和无理数统称为实数。

5、平方根的运算。

6、算术平方根的性质。

性质1一个非负数的算术平方根的平方等于这个数本身。

性质2一个数的平方的算术平方根等于这个数的绝对值。

7、算术平方根的乘、除运算。

1)算术平方根的乘法。

sqrt(a)sqrt(b)=sqrt(ab)(a=0,b=0)。

2算)术平方根的除法。

sqrt(a)/sqrt(b)=sqrt(a/b)(a=0,b0)。

8‘算术平方根的加、减运算。

如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根。

9、一元二次方程及其解法。

1)一元二次方程。

只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程。

2)特殊的一元二次方程的解法。

3)一般的一元二次方程的解法——配方法。

用配方法解一元二次方程的一般步骤是:

2、移项把常数项移至方程右边,将方程化为x^2+px=-q的形式。

4、有平方根的定义,可知。

(1)当p^2/4-q0时,原方程有两个实数根;

(2)当p^2/4-q=0,原方程有两个相等的实数根(二重根);

(3)当p^2/4-q0,原方程无实根。

初三数学知识点归纳图篇十三

考核要求:1理解相似形的概念;2掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理包括预备定理、三个判定定理、直角三角形相似的判定定理和性质,并能较好地应用.

考点5:三角形的重心

考核要求:知道重心的定义并初步应用.

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

考点8:锐角三角比锐角的正弦、余弦、正切、余切的概念,30度、45度、60度角的三角比值.

考点9:解直角三角形及其应用

考核要求:1理解解直角三角形的意义;2会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:1通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;2知道常值函数;3知道函数的表示方法,知道符号的意义.

考点11:用待定系数法求二次函数的解析式

考核要求:1掌握求函数解析式的方法;2在求函数解析式中熟练运用待定系数法.

注意求函数解析式的步骤:一设、二代、三列、四还原.

考点12:画二次函数的图像

考核要求:1知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;2理解二次函数的图像,体会数形结合思想;3会画二次函数的大致图像.

考点13:二次函数的图像及其基本性质

考核要求:1借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;2会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.

注意:1解题时要数形结合;2二次函数的平移要化成顶点式.

考点14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.

考点15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.

考点16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一.

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从 与 之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.

考点18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念如半径、边心距、中心角、外角和,并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.

考点19:画正三、四、六边形.

考核要求:能用基本作图工具,正确作出正三、四、六边形.

考点20:确定事件和随机事件

考核要求:1理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;2能区分简单生活事件中的必然事件、不可能事件、随机事件.

考点21:事件发生的可能性大小,事件的概率

考核要求:1知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;2知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;3理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率.注意:1在给可能性的'大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;2事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.

考点22:等可能试验中事件的概率问题及概率计算

本考点的考核要求是1理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;2会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;3形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.

在求解概率问题中要注意:1计算前要先确定是否为可能事件;2用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整.

考点23:数据整理与统计图表

本考点考核要求是:1知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;2结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.

考点24:统计的含义

本考点的考核要求是:1知道统计的意义和一般研究过程;2认识个体、总体和样本的区别,了解样本估计总体的思想方法.

考点25:平均数、加权平均数的概念和计算

本考点的考核要是:1理解平均数、加权平均数的概念;2掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.

考点26:中位数、众数、方差、标准差的概念和计算

考核要求:1知道中位数、众数、方差、标准差的概念;2会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.

注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;2求中位数之前必须先将数据排序.

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图

考核要求:1理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;2会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.

考点28:中位数、众数、方差、标准差、频数、频率的应用

本考点的考核要是:1了解基本统计量平均数、众数、中位数、方差、标准差、频数、频率的意计算及其应用,并掌握其概念和计算方法;2正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;3能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.

初三数学知识点归纳图篇十四

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质。

(1)具有平行四边形的一切性质。

(2)矩形的四个角都是直角。

(3)矩形的对角线相等。

(4)矩形是轴对称图形。

3、矩形的`判定。

(1)定义:有一个角是直角的平行四边形是矩形。

(2)定理1:有三个角是直角的四边形是矩形。

(3)定理2:对角线相等的平行四边形是矩形。

4、矩形的面积:

s矩形=长×宽=ab。

初三数学知识点归纳图篇十五

1.有些随机事件不可能用树状图和列表法求其发生的概率,只能用试验、统计的方法估计其发生的概率。

2.对于作何一个随机事件都有一个固定的概率客观存在。

3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:

(1)尽量经历反复实验的过程,不能想当然的作出判断;(2)做实验时应当在相同条件下进行;(3)实验的次数要足够多,不能太少;(4)把每一次实验的结果准确,实时的做好记录;(5)分阶段分别从第一次起计算,事件发生的频率,并把这些频率用折线统计图直观的表示出来;(6)观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值 估计事件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事件预测。

游戏对双方公平是指双方获胜的可能性相同。

概率可以和很多知识综合命题,主要涉及平面图形、统计图、平均数、中位数、众数、函数等。

初三数学知识点归纳图篇十六

九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下:

学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。

在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。

二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。

23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。

23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。

23.3课题学习 图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。

圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。

24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。

24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。

24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。

24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。

将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。

25.1概率一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。

25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。

25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。

25.4课题学习 键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。

初三数学知识点归纳图篇十七

数学中考复习应早作打算和安排,授课教师应针对学校教学实际和学生特点,制订详实切实可行的计划。一般在3月底完成新授课任务,4月上旬启动中考复习。4月底完成第一轮“夯实基础”复习,全面系统复习,以课本为本,分单元、章节,依据课程标准、中考说明要求复习,强化知识点、单元章节、考点过关训练,夯实基础,培养基本技能;5月底完成第二轮“专题训练”复习,巩固基础,构建知识网络,使之条理化、系统化,强化分块综合和专项知识训练,突破重点、难点,突出训练灵活运用知识,培养解决实际问题的能力,同时,查补知识盲点,加强训练;6月上旬至中考前完成第三轮“综合检测”复习,回扣双基,排查考点,查漏补缺,注重综合模拟,加强学生应试技巧和解题方法指导,减少非智力因素失分。

作为老师要深入研究中考说明,掌握知识点和考纲中的难易度。在复习时老师要以《考试说明》中的要求为基础,重视基础知识的复习,并不一味强调难题或偏题的训练,而要根据命题难易程度等特点,有针对性的进行复习。

在复习时精选资料、用好资料。在复习之初老师就要为学生精心挑选了几份资料,进行比较后确定一到两份知识点全,难度适中的资料作为课内复习用书。学生手头复习资料不宜过多,多了反而乱,容易产生这样没完成,那样才做一点点的感觉,这样容易造成知识点的遗漏,同时也会使学生产生烦燥的心理。所以,教师要替学生细心挑选复习资料,并让学生明白数学复习资料应精而不应多的道理。

数学概念的复习不是简单的重复,而是要建立概念之间的有机联系,不能死记硬背,要会解决实际问题。例如,初中数学中涉及到有关“式”的概念比较多,有“代数式”、“整式”、“单项式”、“多项式”、“同类项”、“分式”、“有理式”、“最简分式”、“二次根式”、“最简二次根式”、“同类二次根式”等概念,教师要针对这些概念编一到两个习题引导学生弄清这些概念之间的联系与区别。但有一点值得肯定的是,要想用这些概念去解题,首先必须将它们熟记于心。

初三数学知识点归纳图篇十八

平分弦的直径垂直弦,并且平分弦所对的两条弧。

3 弧、弦、圆心角

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4 圆周角

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

5 点和圆的位置关系

点在圆外

点在圆上 d=r

点在圆内 d

定理:不在同一条直线上的三个点确定一个圆。

三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的`三条边的垂直平分线的交点,叫做三角形的外心。

6直线和圆的位置关系

相交 d

相切 d=r

相离 dr

切线的性质定理:圆的切线垂直于过切点的半径;

切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

7 圆和圆的位置关系

外离 dr+r

外切 d=r+r

相交 r-r

内切 d=r-r

内含 d

8 正多边形和圆

正多边形的中心:外接圆的圆心

正多边形的半径:外接圆的半径

正多边形的中心角:没边所对的圆心角

正多边形的边心距:中心到一边的距离

9 弧长和扇形面积

弧长

扇形面积:

10 圆锥的侧面积和全面积

侧面积:

全面积

11 (附加)相交弦定理、切割线定理

第五章 概率初步

1 概率意义:在大量重复试验中,事件a发生的频率 稳定在某个常数p附近,则常数p叫做事件a的概率。

2 用列举法求概率

3 用频率去估计概率

初三数学知识点归纳图篇十九

相似比:相似多边形对应边的比值。

2、相似三角形。

判定:

平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

如果两个三角形的两组对应边的比相等,并且相应的。夹角相等,那么两个三角形相似;

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3相似三角形的周长和面积。

相似三角形(多边形)的周长的比等于相似比;

相似三角形(多边形)的面积的比等于相似比的平方。

4位似。

位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

初三数学知识点归纳图篇二十

一般地,在大量重复试验中,如果事件a发生的频率。

会稳定在某个常数p附近,那么这个常数p就叫做事件a的概率(probability),记作p(a)=p。

注意:(1)概率是随机事件发生的可能性的大小的数量反映。

(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。

3、求概率的方法。

(1)用列举法求概率(列表法、画树形图法)。

(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同。

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 精品推荐
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。大家想知道怎么样才能写得一篇好的心得体会吗?下面小编给大家带来关于学习心得
总结有助于发现不足,促进个人和组织的进步与发展。怎样提高写作水平,让文章更具有说服力?请阅读以下总结范文,希望能给您写总结提供一些思路和灵感。经典美文朗诵稿1分
光阴的迅速,一眨眼就过去了,很快就要开展新的工作了,来为今后的学习制定一份计划。计划书写有哪些要求呢?我们怎样才能写好一篇计划呢?那么下面我就给大家讲一讲计划书
一个好的计划可以帮助我们分清主次,避免盲目行动和浪费时间。我们需要将计划与实际情况进行持续对比和调整,以确保计划的有效性和可行性。无论是学习还是工作,一个科学合
一个好的计划应该具备明确的时间表和清晰的任务分工。有效的计划需要有详细的行动步骤和时间安排。计划是我们迈向成功的桥梁,下面是一份关于计划的范文,希望能够给大家提
有效沟通是保持人际关系和谐的重要因素,我们应该学会如何与他人更加有效地沟通。总结要注重逻辑性和条理性,让读者能够清晰地看到事物之间的关联。以下是一些业界专家分享
方案的制定需要明确目标和指标,以便进行评估和反馈。不同阶段的方案实施都需要相应的沟通和报告,以便及时反馈和协调。接下来,我们将为大家分享一些创新性的方案设计,希
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结
一个好的计划可以帮助我们提高工作和学习的效率。一个好的计划需要有明确的时间节点和阶段性的目标设定。制定好计划之后,千万不要忘记及时跟进和调整。店长工作计划篇一店
制定计划前,要分析研究工作现状,充分了解下一步工作是在什么基础上进行的,是依据什么来制定这个计划的。大家想知道怎么样才能写一篇比较优质的计划吗?以下是小编收集整
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。相信许多人会觉得计划很难写?以下是小编为大家收集的计
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。怎样写计划才更能起到其作用呢?计划应该怎么制定呢?以下是
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么我们该如何写一篇较为完美的教案呢?以下是小编为大家收集的教案范文,仅供参考,
为保证事情或工作高起点、高质量、高水平开展,常常需要提前准备一份具体、详细、针对性强的方案,方案是书面计划,是具体行动实施办法细则,步骤等。方案的格式和要求是什
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧医保征缴宣传标语篇一2、和
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下
总结能够帮助我们反思过去并为未来的工作和学习提供参考,是非常重要的。写总结时要注意适当借鉴他人的经验和做法,但要保持独立思考,形成自己的独特风格。以下总结范文供
通过制定计划,我们可以更好地组织时间和资源,从而提高工作效率。制定计划后,我们应该定期复盘和调整,以适应环境和目标变化带来的影响。以下是一些专家对于计划制定和执
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。那么我们该如何写一篇较为完美的计划呢?以下是小编为大家收集的计划范文,仅供
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。那么方案应该怎么制定才合适呢?下面是小编精心整理的方案策划范文,欢
通过总结,我们可以更好地发现自己的优势和劣势,从而更有针对性地提升自己。写一篇较为完美的总结的方法希望大家在阅读这些总结范文时能够有所收获,写出一篇优秀的总结。
一个有计划的人更容易保持目标的清晰性和确定性,避免偏离轨道。我们需要将计划与实际情况进行持续对比和调整,以确保计划的有效性和可行性。这是一份经过精心设计的计划,
为了保障事情或工作顺利、圆满进行,就不得不需要事先制定方案,方案是在案前得出的方法计划。写方案的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家收集的
为了保障事情或工作顺利、圆满进行,就不得不需要事先制定方案,方案是在案前得出的方法计划。方案能够帮助到我们很多,所以方案到底该怎么写才好呢?以下是小编给大家介绍
方案是从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划。方案的格式和要求是什么样的呢?以下是小编给大家介绍的方案范文的相关内容,希望对大
“方”即方子、方法。“方案”,即在案前得出的方法,将方法呈于案前,即为“方案”。方案能够帮助到我们很多,所以方案到底该怎么写才好呢?下面是小编为大家收集的方案策
无论是个人生活还是工作,都需要有一个明确的计划来指导我们的行动。制定计划时要与团队成员进行充分的沟通和协商,确保他们对计划有清晰的理解和接受。我们整理了一些关于
有一个明确的计划可以让我们更加专注和集中精力,不被琐碎的事务所干扰。通过调查研究和信息收集,获取必要的数据和信息,以支持计划的制定和实施。下面是一份精心准备的计
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介
随着法治精神地不断发扬,人们愈发重视合同,越来越多的人通过合同来调和民事关系,合同能够促使双方正确行使权力,严格履行义务。那么一般合同是怎么起草的呢?这里我整理
随着法律法规不断完善,人们越发重视合同,关于合同的利益纠纷越来越多,在达成意见一致时,制定合同可以享有一定的自由。那么一般合同是怎么起草的呢?下面我给大家整理了
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。相信许多人会觉得计划很难写?下面我帮大家找寻并整理了一些优秀的计划书范文,
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么教案应该怎么制定才合适呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大
确定目标是置顶工作方案的重要环节。在公司计划开展某项工作的时候,我们需要为领导提供多种工作方案。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?以下是小编为大
有计划地安排每天的活动,可以提高工作和学习的效率。在制定计划时,我们要充分考虑各种因素,包括时间、资源和成本等。以下是小编为大家收集的计划范文,仅供参考,大家一
总结是一个自我成长的机会,我们可以从中发现自己的优点和不足。写总结时,要注意语言的得体和准确,避免使用模糊不清或错误的表达方式。以下是一些经典的总结范本,相信可
时间就如同白驹过隙般的流逝,我们的工作与生活又进入新的阶段,为了今后更好的发展,写一份计划,为接下来的学习做准备吧!写计划的时候需要注意什么呢?有哪些格式需要注
方案需要经过不断地反复优化和改进,才能达到预期效果。制定方案时,要确保方案的可行性和可持续性,为长期的目标规划思考。下面是一些成功企业在解决问题和实现目标时所采
确定目标是置顶工作方案的重要环节。在公司计划开展某项工作的时候,我们需要为领导提供多种工作方案。优秀的方案都具备一些什么特点呢?又该怎么写呢?下面是小编为大家收
为了确保事情或工作得以顺利进行,通常需要预先制定一份完整的方案,方案一般包括指导思想、主要目标、工作重点、实施步骤、政策措施、具体要求等项目。方案书写有哪些要求
确定目标是置顶工作方案的重要环节。在公司计划开展某项工作的时候,我们需要为领导提供多种工作方案。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?下面是小编帮大
教案的编写可以帮助教师合理安排教学时间,确保教学进度和质量。编写教案时,要充分考虑学生的学习特点和兴趣爱好,调动学生的学习积极性。下面是一些经过实践验证的教案范
为确保事情或工作顺利开展,常常要根据具体情况预先制定方案,方案是综合考量事情或问题相关的因素后所制定的书面计划。那么方案应该怎么制定才合适呢?以下就是小编给大家
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。什么样的计划才是有效的呢?以下我给大家整理了一些优质
计划可以帮助我们减少压力,更好地应对突发事件和挑战。首先,我们需要明确我们的目标是什么,以及我们希望通过这个计划达到什么样的效果。计划是人们在实现特定目标时,有
在制定计划时,我们需要考虑自己的现实条件和资源限制。制定计划时,可以借鉴他人的经验和教训,避免重复错误。计划可以根据不同的需求和目标而有所不同,以下是几个典型的
议论文是对一个观点进行辩证和论证的一种写作形式,通过写议论文可以提高自己的思辨和说服能力。论证是总结文章中通过逻辑推理和证据支持论点的关键环节。总结范文可以让我
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?以下我给大家整理了一些优
有计划地安排时间可以避免拖延和浪费。可以借鉴他人的经验和建议,学习他们的计划技巧和策略。以下是小编为大家整理的一些制定计划的技巧和范例,供大家参考。希望能够帮助
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。优秀的计划都具备一些什么特点呢?又该怎么写呢?以下我给大家整理了一些优质的计划书范文
时间流逝得如此之快,前方等待着我们的是新的机遇和挑战,是时候开始写计划了。那么我们该如何写一篇较为完美的计划呢?以下是小编为大家收集的计划范文,仅供参考,大家一
教案是教师进行授课和教学管理的重要依据,也是学生学习的重要参考。教案设计的重点是要明确教学内容和学习活动的过程,确保教学的有效性和连贯性。以下是小编整理的一些编
计划可以让我们更有条理地进行工作和学习,避免盲目行动。制定计划时,我们需要充分评估我们的能力和资源,以及外部环境的因素。以下是小编为大家整理的一些实用的计划范例
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。计划书写有哪些要求呢?我们怎样才能写好一篇计划呢?下面是小编为大家带来的计
光阴的迅速,一眨眼就过去了,很快就要开展新的工作了,来为今后的学习制定一份计划。计划怎么写才能发挥它最大的作用呢?下面我帮大家找寻并整理了一些优秀的计划书范文,
拥有一个详细的计划可以帮助我们更好地分配资源和时间,提高工作效率。制定计划时,我们需要考虑到不同任务的优先级和重要性,确保合理分配时间和资源。以下是一些成功人士
“方”即方子、方法。“方案”,即在案前得出的方法,将方法呈于案前,即为“方案”。大家想知道怎么样才能写一篇比较优质的方案吗?以下是小编给大家介绍的方案范文的相关
9.方案的实施需要各个层面的合作和协调。如何制定一个合理可行的方案,是一个需要认真思考的问题。最终的成果和效果是评估方案成功与否的关键指标。安全生产月方案培训优
为了确定工作或事情顺利开展,常常需要预先制定方案,方案是为某一行动所制定的具体行动实施办法细则、步骤和安排等。方案的格式和要求是什么样的呢?以下是我给大家收集整
写心得体会是对过去一段时间的回顾,也是对未来的规划和思考。写心得体会时要注意避免主观偏差,多方面、客观地分析问题。希望这些心得体会范文可以激发大家写作的灵感和动
通过心得体会,我们可以对所学知识和经验进行反思和总结。如何写一篇较为完美的心得体会是一个需要掌握的技巧和方法。以下是一些有关工作的心得体会,希望能帮助你更好地面
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?以下是我为大家搜集的优质
当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,
在选择一个方案之前,我们应该对各个方案进行全面的比较和评估。方案的制定需要与各个相关方进行有效沟通和协商,获得他们的支持和配合。以下是一些实用的方案模板,供大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。相信许多人会觉得计划很难写?下面是小编为大家带来的计划书优秀范文
方案的制定应考虑现实条件和可行性。一个成功的方案需要有明确的资源分配和利用计划。方案的监控和调整是确保其顺利实施和达到预期效果的必要环节。建团100周年活动方案
为了保障事情或工作顺利、圆满进行,就不得不需要事先制定方案,方案是在案前得出的方法计划。写方案的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。写方案的时候需要注意什么呢?有哪些格式需要注意呢?以下就是小编给大
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?这里我整理了一
总结不仅能够反思过去,还能够为未来的行动提供参考和指导。较为完美的总结需要注意文字的流畅和条理性。以下是小编搜集到的一些优秀的总结例句,值得我们借鉴和学习。批复
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接下来小编就给大家介绍一
计划是提高工作与学习效率的一个前提。做好一个完整的工作计划,才能使工作与学习更加有效的快速的完成。怎样写计划才更能起到其作用呢?计划应该怎么制定呢?这里给大家分
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。优秀的计划都具备一些什么特点呢?又该怎么写呢?下面是
方案是为了解决特定问题或达成特定目标而设计和规划的一系列步骤和措施。方案的成功需要有明确的目标和阶段性的里程碑,并进行定期的评估和汇报。接下来,我们将给大家分享
总结可以让我们更深入地思考问题,从而提升我们的思维能力和解决问题的能力。写总结时,要积极评价自己的工作和学习,同时也要指出不足和改进的地方。通过阅读一些总结案例
拥有一个清晰的计划可以减少冲动行为,让我们更加理性地做出决策。制定计划时要考虑到长期和短期的目标,确保计划的连贯性和持续性。合理的计划将为我们的生活和工作带来积
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集
成功需要勤奋和毅力,付出总有回报。写总结时,要注意用词准确、语言简练,尽量避免冗长的描述。不断反思自己的写作过程,总结经验,找到提高的方法。管理失误检讨书800
随着个人素质的提升,报告使用的频率越来越高,我们在写报告的时候要注意逻辑的合理性。那么我们该如何写一篇较为完美的报告呢?下面我给大家整理了一些优秀的报告范文,希
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?那么下面我就给大家讲一讲教案怎么写才比较好,我们
演讲稿在结尾处应该给听众留下深刻的印象,如总结观点、展望未来等。那么我们该如何写一篇出色的演讲稿呢?首先,我们需要确定一个清晰的主题,并进行充分的准备和研究,以
确定目标是置顶工作方案的重要环节。在公司计划开展某项工作的时候,我们需要为领导提供多种工作方案。方案书写有哪些要求呢?我们怎样才能写好一篇方案呢?接下来小编就给
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。那么我们该如何写一篇较为完美的计划呢?下面是小编带来的优秀计划范文,希望大
制定计划前,要分析研究工作现状,充分了解下一步工作是在什么基础上进行的,是依据什么来制定这个计划的。怎样写计划才更能起到其作用呢?计划应该怎么制定呢?以下是小编
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。计划怎么写才能发挥它最大的作用呢?下面是小编整理的个
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?以下是我为大家搜
通过总结,我们可以及时发现并解决工作中的问题,提高工作效率和质量。制定写总结的详细计划和步骤,保证写作顺利进行。在写总结时,我们可以灵活运用这些范文中的写作技巧
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编为大家收集的优
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?下面是小编带来的优秀计划范文,希望大家
a.付费复制
付费获得该文章复制权限
特价:2.99元 10元
微信扫码支付
b.包月复制
付费后30天内不限量复制
特价:6.66元 10元
微信扫码支付
联系客服