在快节奏的生活中,写一份总结能让我们停下来思考,反思自己的表现。写总结时,我们可以运用一些图表和数据来更直观地展示个人成果和发展轨迹。阅读以下总结范文,您可以从中汲取一些写作灵感,为自己的总结工作提供一些新的思路和视角。
式与方程教学设计篇一
义务教育课程标准实验教科书数学(人教版)小学《数学(第九册)》第57、58页的内容。
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学习习惯的培养。
(1)“方程的解”和“解方程”之间的联系和区别。
(2)利用天平平衡的道理理解比较简单的方程的方法。
多媒体课件、单行纸一张。
1.揭示课题,复习铺垫。
生:(100+x)克。
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)。
师:请你根据图意列一个方程。
生:100+x=250(课件显示:100+x=250)。
师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)。
2.探究新知,理解归纳。
(1)概念教学:认识“方程的解”和“解方程”的两个概念。
师:(出示课件)那你猜一猜这个方程x的值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150。
师:xxx同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)。
师:你能根据操作过程说出等式吗?
生:100+x-100=250-100(课件显示:100+x-100=250-100)。
师:这时天平表示未知数x的值是多少?
生:x=150(课件显示:x=150)。
师:是的,xxx同学的想法是正确的',方程左右两边同时减100,就能得出x=150。我们表扬他。
师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。
师:(课件显示x=150的下画线)指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)。
师:(课件显示:方框)。
100+x=250。
100+x-100=250-100。
指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)。
师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)。
师:同时还要注意“=”对齐。
师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的?
(学生独立思考,再在小组内交流。)。
师:谁来说说你想法?
生1:“解方程”是指演算过程。
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]。
(2)教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]。
师:四人小组讨论方程左右两边为什么同时减3?
[学生独立思考,再在小组内交流。]。
师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。
生:x+3=9(板书:x+3=9)。
师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。
师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩x,而天平保持平衡。
生:天平左右两边同时拿走3个方块,使天平左边只剩x,天平保持平衡。(教师随着学生的回答演示课件)。
师:根据操作过程说出等式?
生:x+3-3=9-3(板书:x+3-3=9-3)。
师:这时天平表示x的值是多少?
生:x=6(板书:x=6)。
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩x。
生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?
生:验算。
师:对了,验算方法是什么?
生:将x=6代入原方程,看方程的左边是否等于方程的右边。
(板书:
验算:方程的左边=6+3=9。
所以,x=6是方程的解。)。
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。
(3)练习。
师:现在老师看看同学们对于解方程掌握得怎么样。(出示课件)。
判断题。
a.x=3是方程5x=15的解。()。
b.x=2是方程5x=15的解。()。
考考你的眼力,能否帮他找到错误所在呢?
x+1.2=4x+2.4=4.6。
x+1.2-1.2=4-1.2=4.6-2.4。
x=2.8=2.2。
填空题。
x+3.2=4.6。
x+3.2○()=4.6○()。
x=()。
将课本59页做一做的第1题的左边一小题写在单行纸上。
(4)小结:解含有加法方程的步骤。(口述过程)。
3.拓展延伸。
(1)解方程x一2=15(课件显示)。
师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?
生:敢。
师:谁愿意读读这个方程?
[学生都争着读这个方程,可激烈了]。
师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。(指名xxx同学到黑板板演,其他同学在单行纸完成)。
[学生试着解方程并进行口头验算]。
(2)集体交流、评价、明确方法。
师:xxx同学做对了吗?
生:对。
师:方程左右两边为什么同时加2?
生:方程左右两边同时加2,使方程左边只剩x,方程左右两边相等。(由板演xxx同学面向大家回答)。
4.提炼升华。
师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)。
生:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩x,方程左右两边相等。
c)求出x的值。
d)验算。
5.全课小结,评价深化。
1、通过今天的学习,同学们有哪些收获?
2、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
3、对老师的表现进行评价。
解方程。
例1:书本图。
x+3=9验算:x-2=15。
解:x+3-3=9-3方程左边=6+3=9解:x-2+2=15+2。
所以,x=6是方程的解。
式与方程教学设计篇二
理解掌握方程、方程的解、解方程等概念。
2.理解方程与等式的关系。
3.会用加、减、乘、除各部分间关系解一步简易方程并会检验。
4.培养观察、抽象、总结、概括能力、发展思维。
5.使学生感受数学知识间的联系,渗透转化的数学思想。
使学生初步掌握解方程的方法和书写格式,并会检验。
帮助学生建立“方程”的概念,并会应用。
关键:帮助学生建立“方程”的概念,并会应用。
一、导入新课。
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、解决问题。
出示p57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?
杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
2、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
3、练习。(做一做)。
齐读题目要求。
=5×3。
=15。
所以,x=3是方程的解。
用同样的方法检查x=2是不是方程5x=15的解。
三、作业。
独立完成练习十一第4题,强调书写格式。
四、小结。
通过这节课学到了什么?还有什么问题?
式与方程教学设计篇三
义务教育课程标准实验教科书数学(人教版)小学《数学(第九册)》第57、58页的内容。
(二)教学目标。
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学习习惯的培养。
(三)教学重、难点。
(1)“方程的解”和“解方程”之间的联系和区别。
(2)利用天平平衡的道理理解比较简单的方程的方法。
(四)教学准备。
多媒体课件、单行纸一张。
(五)教学过程。
1.揭示课题,复习铺垫。
生:(100+x)克。
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)。
师:请你根据图意列一个方程。
生:100+x=250(课件显示:100+x=250)。
师:这个方程怎么解呢?就是我们今天要学习的内容――解方程。(板书课题:解方程)。
2.探究新知,理解归纳。
(1)概念教学:认识“方程的解”和“解方程”的两个概念。
师:(出示课件)那你猜一猜这个方程x的值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150。
师:xxx同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)。
师:你能根据操作过程说出等式吗?
生:100+x-100=250-100(课件显示:100+x-100=250-100)。
师:这时天平表示未知数x的值是多少?
生:x=150(课件显示:x=150)。
师:是的,xxx同学的想法是正确的,方程左右两边同时减100,就能得出x=150。我们表扬他。
师:根据刚才的实验,我们来认识两个新的概念―――“方程的解”和“解方程”。
师:(课件显示x=150的下画线)指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)。
师:(课件显示:方框)。
100+x=250。
100+x-100=250-100。
指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)。
师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)。
师:同时还要注意“=”对齐。
师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的?
(学生独立思考,再在小组内交流。)。
师:谁来说说你想法?
生1:“解方程”是指演算过程。
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]。
(2)教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]。
师:四人小组讨论方程左右两边为什么同时减3?
[学生独立思考,再在小组内交流。]。
师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。
生:x+3=9(板书:x+3=9)。
师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。
师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩x,而天平保持平衡。
生:天平左右两边同时拿走3个方块,使天平左边只剩x,天平保持平衡。(教师随着学生的回答演示课件)。
师:根据操作过程说出等式?
生:x+3-3=9-3(板书:x+3-3=9-3)。
师:这时天平表示x的值是多少?
生:x=6(板书:x=6)。
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩x。
生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?
生:验算。
师:对了,验算方法是什么?
生:将x=6代入原方程,看方程的左边是否等于方程的右边。
(板书:
验算:方程的左边=6+3=9。
所以,x=6是方程的解。)。
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。
式与方程教学设计篇四
3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;。
2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
重点:二元一次方程的概念及二元一次方程的解的概念。
难点。
1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、通过学练结合,以游戏的形式让学生及时巩固所学知识。
创设情境导入新课。
1、一个数的3倍比这个数大6,这个数是多少?
1、发现新知。
根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)。
2、巩固新知。
判断下列各式是不是二元一次方程(1)(2)(3)(4)。
3、师生互动再探新知。
(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)。
(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。)。
若未知数设为,记做,若未知数设为,记做。
4、检验新知。
(1)检验下列各组数是不是方程的解:(学生感悟二元一次方程解的不唯一性)。
(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)。
5、自我挑战三探新知。
有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。
请找出这个方程的一个解,并写出你得到这个解的过程。
学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。
比较一元一次方程和二元一次方程的相同点和不同点。
相同点:方程两边都是整式,含有未知数的项的次数都是一次。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
式与方程教学设计篇五
1、结合具体的题目,让学生初步理解方程的解与解方程的含义。
2、会检验一个具体的值是不是方程的解,掌握检验的格式。
3、进一步提高学生比较、分析的能力。
知识重点解方程的规范步骤。
教学难点比较方程的解和解方程这两个概念的含义。
引入。
(1)上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。
(2)学习这些规律有什么用呢?(用于解方程)从这节课开始我们就会逐渐发现到它的重要作用了。
教学过程一、解决问题。
出示p57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
二、认识、区别方程的解和解方程。
得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
三、方程的检验。
p58例1p59例2。
=6+3。
=9。
所以,x=6是方程的解。
课堂练习独立完成练习十一第4题,强调书写格式。
小结与作业。
课堂小结这节课你学到了什么?
(1)解方程和方程的解有什么区别。
(2)解方程要按照什么样的格式来写?
(3)如何检验呢?格式又是怎么样的?
课后追记。
本课应用方程平衡原理来解方程,要注意的是检验方程的时候,最后一句话,所以××是方程的解(这里的××学生容易写成方程右边的值)。
第7课时:解方程(2)。
1、结合具体图例,根据等式不变的规律会解方程。
2、掌握解方程的格式和写法。
3、进一步提高学生分析、迁移的能力。
知识重点掌握解方程的方法。
引入前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
教学过程新知学习。
(一)教学例1。
抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3。
化简,得到x=6。
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
=6+3。
=9。
所以,x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二)教学例2。
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
式与方程教学设计篇六
2、使学生能根据应用题的特点选择恰当的方法来解答。
3、进一步培养学生分析数量关系的能力,发展学生的思维。
根据题目的具体情况选择合理的解题方法。
通过不同题型的训练使学生进一步掌握列方程解决问题的基本方法,而且能使学生进一步体会到方程是描述数量关系的一种常用和有效的数学模型,列方程解决问题具有独特的方法价值。激发学生探索数学规律的兴趣,有利于学生进一步感受到用字母表示数以及列方程解决问题的优越性。
一、揭示课题。
1、引入课题。
我们已经会根据几个数之间的等量关系列出方程。今天这节课,我们着重复习根据应用题数量之间的相等关系,列方程解答,(板书课题)通过复习,要能根据题意正确地列方程来解答应用题。同时还要能根据数量关系的特点,灵活地选择算术方法或用方程来解答应用题。
2、复习解题步骤。
提问:我们过去列方程解应用题的步骤是怎样的?
板书:(1)审题,用x表示未知数;
(2)找等量关系,列方程;
(3)解方程;
(4)检验,写答案。
你认为其中最关键的是哪一步?为什么?
指出:列方程解应用题要按照解题步骤进行,其中最关键的一步是找等量关系列方程。(板书:关键:找等量关系)因为方程是根据等量关系列出来的,只有等量关系找正确,对照等量关系列出的方程才正确。
学生个别口答后再整理。
2、京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)。
4、完成93页第6题。
(1)理解鞋的码数与厘米数的换算关系。
(2)进行码数与厘米数的换算。
强调:根据题目的'情况,合理选择方法,列算式或列方程。
5、完成93页的第7题。
理解“一种药品降价10%”的含义。
6、完成93页的第8题。
强调:(1)两种衬衫的原价相同,由于打的折扣不同,所以现价不同。(2)108原是这两中衬衫现价的和。
学生独立完成,指名说说思考过程。
指名板演,集体交流,说说解题思路。
两人一组,分组开展活动,适时互换角色。
三、全课总结。
通过这节课的复习,你有了哪些新的认识?还有哪些疑问?
学生互说体会。
四、拓展延伸。
式与方程教学设计篇七
(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系.
2、过程与方法
在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
3、情态与价值观
通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
直线的点斜式方程和斜截式方程。
直线的点斜式方程和斜截式方程的应用
问题
设计意图
师生活动
1、在直线坐标系内确定一条直线,应知道哪些条件?
使学生在已有知识和经验的基础上,探索新知。
学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标满足的关系式。
2、直线经过点,且斜率为。设点是直线上的任意一点,请建立与之间的关系。
培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标满足的关系式,从而掌握根据条件求直线方程的方法。
学生根据斜率公式,可以得到,当时,即(1)教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。
3、(1)过点,斜率是的直线上的点,其坐标都满足方程(1)吗?
使学生了解方程为直线方程必须满两个条件。
学生验证,教师引导。
问题
设计意图
师生活动
(2)坐标满足方程(1)的点都在经过,斜率为的直线上吗?
使学生了解方程为直线方程必须满两个条件。
学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式(point slope form).
4、直线的点斜式方程能否表示坐标平面上的所有直线呢?
使学生理解直线的点斜式方程的适用范围。
学生分组互相讨论,然后说明理由。
5、(1)轴所在直线的方程是什么?轴所在直线的方程是什么?
(2)经过点且平行于轴(即垂直于轴)的直线方程是什么?
(3)经过点且平行于轴(即垂直于轴)的直线方程是什么?
进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。
教师学生引导通过画图分析,求得问题的解决。
6、例1的教学。(教材93页)
学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。
教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。
7、已知直线的斜率为,且与轴的交点为,求直线的方程。
引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。
学生独立求出直线的方程:
(2)
再此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。
8、观察方程,它的形式具有什么特点?
深入理解和掌握斜截式方程的特点?
学生讨论,教师及时给予评价。
问题
设计意图
师生活动
9、直线在轴上的截距是什么?
使学生理解“截距”与“距离”两个概念的区别。
学生思考回答,教师评价。
体会直线的斜截式方程与一次函数的关系.
学生思考、讨论,教师评价、归纳概括。
11、例2的教学。(教材94页)
掌握从直线方程的角度判断两条直线相互平行,或相互垂直;进一步理解斜截式方程中的几何意义。
教师引导学生分析:用斜率判断两条直线平行、垂直结论。思考(1)时,有何关系?(2)时,有何关系?在此由学生得出结论:
且;
12、课堂练习第95页练习第1,2,3,4题。
巩固本节课所学过的知识。
学生独立完成,教师检查反馈。
13、小结
使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。
14、布置作业:第106页第1题的(1)、(2)、(3)和第3、5题
巩固深化
学生课后独立完成。
例3.如果直线沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,求直线l的斜率.
作业布置:第100页第1题的(1)、(2)、(3)和第3、5题
课后记:
式与方程教学设计篇八
教学内容。
方程的意义(人教版义务教育课程标准实验教材五年级上册第四单元第二小节解简易方程的第一课时)。
教学理念。
新课标要求数学课程的培养目标要面向全体学生,适应学生个性发展的需要,使得人人都获得良好的数学教育,不同的人在数学上得到不同的发展。让学生获得数学活动经验,培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果。学会用图形思考、想象问题,能从“数”与“形”两个角度认识数学。
教学策略。
本节课我根据盲生因视觉障碍,对事物缺少整体感知,不能准确地理解抽象的数学观念这一特点,我充分利用直观创设情境,恰当地构造数学问题,将抽象的数学关系具体化,调动学生的直观思维;让学生经历观察、感知、思考、猜想、验证、分类比较、归纳概括的过程。通过数形结合的方法实现抽象与具体之间的转变。
内容分析。
方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,从未知数只是结果到未知数参加运算,是学生学习数学方法的一次提升;也是学生又一次接触初步代数思想,是思维的一次飞跃。代数思维是数学学习的"核心思想",本课教学内容是学生从算术思维到代数思维的过渡。
教学目标。
1.根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。
2.使学生在观察、感知、思考、猜想、验证、分类比较、归纳概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成方程模型的思想,掌握研究问题的方法。
3.分类分层教学,在学生学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。
教学重点。
结合具体情境理解方程的意义,用方程表示简单的等量关系。
教学难点。
从算术思维到代数思维的过渡。
教学准备。
玩具天平塑料香蕉小袋子多媒体课件、盲文及低视力卡片。
教学过程。
一、创设情境,抽象出等量关系。
(一)依据天平,理解相等,1.认识天平。
同学们认识天平吗?知道天平是干什么用的吗?(称质量、比较物体的质量)那天平是根据什么来称量或者比较物体的质量?(平衡)让学生用玩具天平来感知一下平衡(低视生看,老师协助全盲生用手慢慢向上托,直到手掌触到物体)。
低视力生看大屏幕,根据自己看到的画面,帮助全盲生把实物挂起来(天平左面有60克和40克的香蕉,右面有100克的香蕉)。
天平此时的状态怎么样哪?(低视力生观察,全盲生感知。)天平平衡说明什么?(左右两边质量相等)。
能用数学式子表示出来吗?
预设:40+60=10060+40=100(板书)。
像这样含有等号的式子我们叫它等式。
3、让学生再说几个等式。
(二)依据天平,理解不相等1.理解不相等。
如果把左边40克的香蕉拿下去了,天平会怎样?(预设:左边轻,右边重。)。
此时天平的状态又怎样哪?(不平衡。)低视生观察,全盲生感知。
让学生用一个数学式子表示。(预设:60<100,10060。
刚才相等的式子叫等式,这样不相等的呢?(预设:不等式,或不知道。)。
2、让学生再说几个不等式。
(三)依据天平,理解含有字母的等式与不等式。
1、猜想:如果把一个袋子放到天平的左边,天平会怎么样?可能会出现哪些情况?
2、交流。(预设:左边重,右边轻;右边重,左边轻;一样重。)。
3、验证:低视力生协助全盲生操作验证(教师协助)。
1、谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了(把玩具天平收起来)。
还有天平吗?(预设:没有。)。
你心中的天平还有没有?(有)。
2、出示课件:
3、低视力生看大屏幕,并叙述图意。
5、让学生用数学式子表示出来。(预设:5x=800)并让学生说一说5x表示的意思。(预设:5x是5个苹果的质量)。
6、说一说:5个苹果的质量为什么用5x来表示?(预设:因为一个苹果的质量不知道,可以用x表示,5个苹果的质量就用5x来表示。)。
7、评价:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。
二、引导学生给式子分类,抽象概括出方程的意义。
(一)式子分类,揭示方程的意义。
1、一小组为单位,让学生拿出自己的卡片,给刚才的式子分类。并思考分类标准。
2、学生交流(预设:
1、按是否是等式来分。
2、是否含有字母来分。
3、还有学生把60+x=100,5x=800单分一类)。
3、教师揭示:象60+x=100,5x=800就是方程。
4、让学生根据这两个式子的特点说一说什么叫方程?
5、教师点题:含有未知数的等式叫做方程。
(二).探讨并揭示等式与方程的关系。
1、让学生试着说一说方程与等式的关系。
2、学生交流。
3、教师引导:如果方程是一个大圆,方程应该是什么?(预设:一个小圆,在大圆中)。
三、巩固拓展、应用概念。
刚才我们认识了方程,你能判断什么是方程吗?
1.应用概念,判断方程。
判断下面的式子是否是方程。(提问c类学生)。
x+515+5=202x+31036-x=9×32.应用概念,解决问题。
(1)课件出示:(提问b类学生)。
(5)课件出示:(提问a、b类学生)。
教法同上。
(6)课件出示:(提问a类学生)。
(7)先让低视生说说这幅图的意思?
(9)评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。
四、回顾反思总结提升这节课你学到了什么?
(结合学生的回答,小结)。
五、作业:(1)练习十一第一题。
(2)根据今天学习的知识,编一个关于方程的数学故事。
式与方程教学设计篇九
本文是本站小编为大家整理的五年级数学《解方程》教学反思范文,希望对大家有所帮助。
今天对五年级上册《解方程》进行了教学。本课主要对教学例一和例二进行了教学。
理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。
当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。
通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!
有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。
总之,“兴趣是学生最好的老师”,只要紧紧抓住这一点,教学质量的提高指日可待!