在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
证明函数可导性例题 证明函数可导一定连续篇一
◎李思阳本溪市机电工程学校 117022
【内容简要】构造辅助函数,把不等式证明转化为利用导数研究函数的单调性或最值,从而证得不等式。而如何构造一个可导函数,是用导数证明不等式的关键。本文从热门的高考题及模拟题中选出四种类型题供师生们参考。
【关键词】构造辅助函数;导数;不等式。
一.直接作差
1(2011·辽宁文科)设函数f(x)xax2blnx,曲线yf(x)过p(1,0),且在p点处的切线斜率为2.(1)求a,b的值;
(2)证明:f(x)2x2。
(1)解:f(x)=1+2ax1a0b.由已知条件得f(1)0,f(1)=2,即 x12ab2
解得a1。
b3
(2)证明:因为f(x)的定义域为(0,+∞),由(1)知f(x)xx23lnx。
设g(x)f(x)(2x2)=2xx3lnx,则g(x)=12x23(x1)(2x3)=。xx
当0<x<1时,g(x)>0,当x>1时,g(x)<0。
所以g(x)在(0,1)内单调递增,在(1,+∞)内单调递减。而g(1)=0,故当x>0时,g(x)≤0,即f(x)2x2。
总结:直接作差g(x)f(x)(2x2),用导数得gmax(x)g(1)=0,从而得证。直接作差是证这类题最常用的方法。
二.分离函数
2.(2011·课标全国卷文科)已知函数f(x)
处的切线方程为x2y30。
(1)求a,b的值;
(2)证明:当x>0,且x1时,f(x)>
(1)解:略a1,b1。alnxb,曲线yf(x)在点(1,f(1))x1xlnx。x1
lnx1lnx1x21,所以f(x)(2lnx)。(2)证明:由(1)知f(x)=x1xx11x2x
x21考虑函数h(x)=2lnx(x>0),则 x
22x2(x21)(x1)2
=。h(x)=22xxx
所以当x1时,h(x)<0,而h(1)0
当x∈(0,1)时,h(x)>0,可得,故 1h(x)>0; 21x
1h(x)>0。当x∈(1,+∞)时,h(x)<0,可得1x2
lnx从而当x>0,且x1时,f(x)>。x1
总结:作差后的函数如可分为两个函数的积,直接求导很繁,可取其中一个函数求导,再讨论证明。
三.巧妙变形
3.(2010·辽宁文科)已知函数f(x)(a1)lnxax21。
(1)讨论函数f(x)的单调性;
(2)设a2,证明:对任意x1,x2∈(0,+∞),f(x1)f(x2)4x1x2。解:(1)略。
(2)不妨设x1≥x2,由于a2,故f(x)在(0,+∞)减少。所以
f(x1)f(x2)4x1x2等价于f(x2)f(x1)≥x1-x2,即f(x2)x2≥f(x1)x1。
a12ax24xa12ax4=令g(x)f(x)x,则g(x)=。于是 xx
4x24x1(2x1)2
g(x)≤≤0。xx
从而g(x)在(0,+∞)单调减少,故g(x1)≤g(x2)。即f(x1)x1≤f(x2)x2,故,对任意x1,x2∈(0,+∞),f(x1)f(x2)4x1x2。
总结:通过等价变形,构造函数g(x),利用g(x)的单调性得证。
四.作函数积
12。exex
1212证明: 对任意的x(0,﹢∞),lnx1>xx(lnx1)>x(x)exexee
x2设函数f(x)=xlnxx,g(x)=x+。ee
111f(x)=lnx2,f(x)=0,得x2,易知fmin(x)=f(2)=—2。eee4.(2011·本溪一中模拟)对任意的x(0,﹢∞),求证:lnx1>
1exxex
,=0,得1,易知==。g(1)g(x)=g(x)g(x)xmaxee2x
11,∴fmin(x)>gmax(x),∴f(x)g(x)。ee2
x212∴xlnxxx+。因此lnx1>x。exeee∵
总结:直接做不好做,不等式两边同乘以一个函数,先进行证明,得到结果后再同除以这个函数,从而证得。
证明函数可导性例题 证明函数可导一定连续篇二
1.讨论函数f(x)2.已知f(x)x1,x1在x1处的连续性。
1x,x12x,x1在x1处的连续,试求a值。
axb,x1ex,x03.设函数f(x)在x0处的连续,试求a值。
ax,x04.讨论函数f(x)x,x0在x0处的连续性和可导性。
x,x0sinx,x05.设函数f(x),求f(0)。
x,x01xarctan,x06.证明函数f(x)在x0处的连续但不可导。x0,x01sinx)a2,x0b(7.确定a.与b的值,使f(x)在x0处可导。axe1,x0x2,x08.已知函数f(x),求f(0)及f(0)又f(0)是否存在?
x,x0x2,x09.设函数f(x)a,x0,则a为何值时f(x)在x0处的连续,并讨x,x0论此时函数在x0处是否可导。
x2,x310.确定a.与b的值,使f(x)在x3处可导。
axb,x3