当前位置:网站首页 >> 文档 >> 2025年初中柯西不等式证明(7篇)
范文文档
2025年初中柯西不等式证明(7篇)
  • 时间:2025-01-07 04:20:20
  • 小编:安心嘻嘻嘻
  • 文件格式 DOC
下载文章
一键复制
猜你喜欢 网友关注 本周热点 精品推荐
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整
总结是对过去种种经历的汇总,也是为了更好地迎接未来挑战的准备。如何与他人建立良好的沟通和合作关系?以下是一些精选的总结样本,供大家参考和学习。不等式与不等式组教
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编为大家
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧对外
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编为大家收集的优
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?又该怎么写呢?这里我给大家分享一些最新的教案范
就业问题是指劳动者在就业过程中遇到的种种问题和困境。正确的总结方法是将问题和解决方案进行对比和分析。以下是一些学习总结的例子,希望能对同学们的学习有所帮助。岗位
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么我们该如何写一篇较为完美的教案呢?下面是小编为大家带来的优秀教案范
当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。那么你知道心得体会如何写吗?下面是小编帮大家整理的优秀心得体会范文,供大家参考借
教案的编写应根据不同年级、学科和教学内容的特点进行灵活调整。在制定教案时应该考虑学生的具体学习情况。鼓励大家根据这些教案范文的思路和方法进行创新和改进。初一数学
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。总经理岗位职责及能力要
通过总结心得体会,我们可以更好地规划和安排未来的学习和工作。写心得体会时要注意表达准确、简洁,言之有物。以下是小编为大家精选的心得体会范文,供大家参考和借鉴。团
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编帮大家整理的优
演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。演讲稿对于我们是非常有帮助的,可是应该怎么写演讲稿呢?那么下面我就给大家讲一讲演讲稿怎么写
演讲,首先要了解听众,注意听众的组成,了解他们的性格、年龄、受教育程度、出生地,分析他们的观点、态度、希望和要求。掌握这些以后,就可以决定采取什么方式来吸引听众
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。优质的心得体会该怎么样去写呢?以下是我帮大家整理的最新心得
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。管理人
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优
我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。那么心得体会该怎么写?想必这让大家都很苦
作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是我给大家整理的教案范文,
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编为大家带来的优秀教案范文
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面我帮大家找寻并整
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集的教案范文
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编帮大家整理的优
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧电工技师履
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面是
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?以下是小编为大家收集的优
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。公交司
作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。大家想知道怎么样才能写一篇比较优质的教案吗?以下我给大家整理了一些优质的教案范文
随着个人素质的提升,报告使用的频率越来越高,我们在写报告的时候要注意逻辑的合理性。优秀的报告都具备一些什么特点呢?又该怎么写呢?下面是小编给大家带来的报告的范文
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?以下是小编帮大家
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面
心得体会是个人对学习和工作中遇到的问题及解决方法的思考和总结。写心得体会时可以运用一些修辞手法,增强文章的感染力和吸引力。看看他人的心得体会,可以开拓我们的文化
当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面小编给大家带来关
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面是
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。建
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲教案怎么写才比较好,
调查报告是一种通过数据统计和分析得出的结论和建议,它能够提供客观的研究结果。总结不只是对事情的简单归纳,还要有对过程的回顾和对成果的评价。总结范文中的案例和观点
当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。那么我们写心得体会要注意的内容有什么呢?下面是小编帮大家整
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。既然教案这么重要,那到底该怎么写一篇优质的教案呢?下面我帮大家找寻并整
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么我们该如何写一篇较为完美的教案呢?这里我给大家分享一些最新的教案范文,方便
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么我们该如何写一篇较为完美的教案呢?以下是小编收集整理的教案范文,仅供参考,希望
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。大家想知道怎么样才能写一篇比较优质的教案吗?以下是小编为大家收集的教案范文,仅
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编为大家收集的优
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集的教案范文,
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面是小编为大家
教案能够指导教师进行系统的教学,确保教学目标的达成。教案的编写要充分利用多种教学资源,提高教学的多样性和趣味性。以下是一些典型教案的案例,希望对大家的教学工作有
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编带
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么制定才合适呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。大家想知道怎么样才能写一篇比较优质的教案吗?以下是小编收集整
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编带来的优秀教案范文,希望大家
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么制定才合适呢?以下是小编收集整理的教案范文,仅供参考,希望能够
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。大家想知道怎么样才能写一篇比较优质的教案吗?那么下面我就给大家讲一讲教案怎么写才比较好,我
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编为大家收集的优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧与岗
总结不仅仅是对成绩或者经历的简单罗列,更是对其中的经验和启示进行深入思考的过程。在写总结时,需要注重思考总结的目的和内容,使其有针对性和实质性。以下是小编为大家
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面我帮大家找寻并整理了一些
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整
教案应该包括教学活动的组织安排、教学步骤的详细说明和教学资源的准备。教案应与教材紧密结合,使学生能够真正掌握教材内容。高质量的教案可以提高教学效果,培养学生的学
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。那么教案应该怎么制定才合适呢?以下我给大家整理了一些优质的教
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。大家想知道怎么样才
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面我帮大家找寻并整理了一些优秀的教
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧初中
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?这里我给大家分享一些最新的教案范文,方便
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一

2025年初中柯西不等式证明(7篇)

格式:DOC 上传日期:2025-01-07 04:20:20
2025年初中柯西不等式证明(7篇)
    小编:安心嘻嘻嘻

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

初中柯西不等式证明篇一

1.求函数yx24

x,(xr)的最小值。

2.求函数yx4x

2,(xr)的最小值。

xr且x2y

3.设2

1,求xy2的最大值

4.设x,y,z为正实数,且x+y+z=10,求4x19

yz的最小值。

已知:x2

5.4

y21 求:xy;2xy的取值范围。

6.已知:a2

b2

1,m2

n2

2,求ambn的取值范围

7.已知:2x3y1 求:x2

2y2的最小值.8.求函数yx12x的取值范围。

9.求函数yx12x的最大值。

证明不等式

1.求证:a2b2c2abbcac

2.已知a,b都是正数,求证:

(1)(1ab)(1a2b2)9ab;(2)(a2bab2)(ab2a2b)9a2b2.3.设a,b,c,dr,求证:a2b2c2d2(ac)2(bd)2。

4.已知a2b2c21,x2y2z21,求证:axbycz1.

5.已知a,b,c均为正数,且abc1,求证:111abc

9

6.若0,则1sincos2.

初中柯西不等式证明篇二

高中数学新课标选修4-5课时计划东升高中高二备课组 授课时间: 2007年 月 日(星期)第节 总第 课时

第一课时3.1二维形式的柯西不等式

(一)

教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义,并会证明二维柯西不等式及向量形式.教学重点:会证明二维柯西不等式及三角不等式.教学难点:理解几何意义.教学过程:

一、复习准备:

1.提问: 二元均值不等式有哪几种形式?

答案:

ab

2

(a0,b0)及几种变式.2.练习:已知a、b、c、d为实数,求证(a2b2)(c2d2)(acbd)2证法:(比较法)(a2b2)(c2d2)(acbd)2=….=(adbc)20

二、讲授新课:

1.教学柯西不等式:

① 提出定理1:若a、b、c、d为实数,则(a2b2)(c2d2)(acbd)2.→ 即二维形式的柯西不等式→ 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法?证法二:(综合法)(a2b2)(c2d2)a2c2a2d2b2c2b2d

222(acbd)(adb)c((要点:展开→配方)ac.)b d





证法三:(向量法)设向量m(a,b),n(c,d),则|m|,|n|

∵ mnacbd,且mn|m||n|cosm,n,则|mn||m||n|.∴ …..证法四:(函数法)设f(x)(a2b2)x22(acbd)xc2d2,则

f(x)(axc)(bxd)≥0恒成立.22

∴ [2(acbd)]24(a2b2)(c2d2)≤0,即…..③ 讨论:二维形式的柯西不等式的一些变式?

|acbd| 或

acbd.



|ac||bd|

④ 提出定理2:设,是两个向量,则||||||.即柯西不等式的向量形式(由向量法提出)





→ 讨论:上面时候等号成立?(是零向量,或者,共线)

⑤ 练习:已知a、b、c、d

.证法:(分析法)平方 → 应用柯西不等式→ 讨论:其几何意义?(构造三角形)2.教学三角不等式:

① 出示定理3:设x1,y1,x2,y2

r

分析其几何意义 → 如何利用柯西不等式证明

→ 变式:若x1,y1,x2,y2,x3,y3r,则结合以上几何意义,可得到怎样的三角不等式?3.小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)

三、巩固练习:

1.练习:试写出三维形式的柯西不等式和三角不等式2.作业:教材p37

4、5题.教学后记:板书设计:

第二课时3.1二维形式的柯西不等式

(二)

教学要求:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系.教学重点:利用二维柯西不等式解决问题.教学难点:如何变形,套用已知不等式的形式.教学过程:

一、复习准备:

1.提问:二维形式的柯西不等式、三角不等式? 几何意义?答案:(a2b2)(c2d2)(ac

bd)22.讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维? 3.如何利用二维柯西不等式求函数y?

要点:利用变式|acbd|

二、讲授新课:

1.教学最大(小)值:

.① 出示例

1:求函数y

分析:如何变形?→ 构造柯西不等式的形式→ 板演

变式:y→

推广:yd(a,b,c,d,e,fr)② 练习:已知3x2y1,求x2y2的最小值.解答要点:(凑配法)x2y2

3(xy)(32)

113

(3x2y)

113

.讨论:其它方法(数形结合法)2.教学不等式的证明:

① 出示例2:若x,yr,xy2,求证:

1x1y2.分析:如何变形后利用柯西不等式?(注意对比 → 构造)

要点:

1x1y12(xy)(1x1y)

22

2

]…

讨论:其它证法(利用基本不等式)

② 练习:已知a、br,求证:(ab)()4.a

b

13.练习:

① 已知x,y,a,br,且要点:xy(

xa

by

axby

1,则xy的最小值.)(xy)….→ 其它证法

② 若x,y,zr,且xyz1,求x2y2z2的最小值.(要点:利用三维柯西不等式)变式:若x,y,zr,且xyz

1的最大值.3.小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧.

三、巩固练习:

1.练习:教材p37

8、9题2.作业:教材p37

1、6、7题

第三课时3.2一般形式的柯西不等式

教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.教学重点:会证明一般形式的柯西不等式,并能应用.教学难点:理解证明中的函数思想.教学过程:

一、复习准备: 1.练习:

2.提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?

答案:(a2b2)(c2d2)(acbd)2;(a2b2c2)(d2e2f2)(adbecf)2

二、讲授新课:

1.教学一般形式的柯西不等式:



① 提问:由平面向量的柯西不等式||||||,如果得到空间向量的柯西不等式及代数形

式?

② 猜想:n维向量的坐标?n维向量的柯西不等式及代数形式?结论:设a1,a2,,an,b1,b2,,bnr,则

2(a12a22a)(bbn12)bnb)(1a1babnna22



anbn

讨论:什么时候取等号?(当且仅当

a1b

1

a2b2

时取等号,假设bi0)

222

联想:设ba1b1a2b2anbn,aa12a22an2,则有b2ac0,cb1b2bn,可联想到一些什么?

③ 讨论:如何构造二次函数证明n维形式的柯西不等式?(注意分类)

2222222

要点:令(fx)(a1a2an)x2(a1b1a2b2anbn)x(b1b2bn),则

f(x)(a1xb1)(a2xb2)+(anxbn)0.222

又a12a22an20,从而结合二次函数的图像可知,2(a1b1a2b2anbn)4(a1a2an)(b1b2bn)≤0

即有要证明的结论成立.(注意:分析什么时候等号成立.)④ 变式:a12a22an2

1n

(a1a2an).(讨论如何证明)

2.教学柯西不等式的应用:

① 出示例1:已知3x2yz1,求x2y2z2的最小值.分析:如何变形后构造柯西不等式?→ 板演→ 变式: ② 练习:若x,y,zr,且

1x1y1z

1,求x

y2z

3的最小值..1bc)(11)

4③ 出示例2:若a>b>c,求证:要点:(ac)(1ab

1bc

1ab

1bc

4ac

1ab

)[(ab)(bc)](3.小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.

三、巩固练习:

1.练习:教材p414题2.作业:教材p

415、6题

第四课时3.3 排序不等式

教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法.教学重点:应用排序不等式证明不等式.教学难点:排序不等式的证明思路.教学过程:

一、复习准备:

1.提问: 前面所学习的一些经典不等式?(柯西不等式、三角不等式)

2.举例:说说两类经典不等式的应用实例.

二、讲授新课:

1.教学排序不等式: ① 看书:p42~p44.② 提出排序不等式(即排序原理): 设有两个有序实数组:a1a2···an;b1b2···bn.c1,c2,···cn是b1,b2,···,bn的任一排列,则有

a1b1a2b···+anbn(同序和)

2··+ancn(乱序和)a1c1a2c2+·

··+anb1(反序和)a1bna2bn1+·

当且仅当a1a2···=an或b1b2···=bn时,反序和等于同序和.(要点:理解其思想,记住其形式)2.教学排序不等式的应用:

① 出示例1:设a1,a2,,an是n个互不相同的正整数,求证:

1

1213

1na1

a22

a3

3

ann

.分析:如何构造有序排列? 如何运用套用排序不等式?证明过程:

设b1,b2,,bn是a1,a2,,an的一个排列,且b1b2bn,则b11,b22,,bnn.又1a1



1n,由排序不等式,得

b22

a22

a33



ann

b1

b33



bnn

…

小结:分析目标,构造有序排列.② 练习:

已知a,b,c为正数,求证:2(a3b3c3)a2(bc)b2(ac)c2(ab).解答要点:由对称性,假设abc,则a2b2c2,于是 a2ab2bc2ca2cb2ac2b,a2ab2bc2ca2bb2cc2a,两式相加即得.3.小结:排序不等式的基本形式.

三、巩固练习:

1.练习:教材p451题 2.作业:教材p4

53、4题

初中柯西不等式证明篇三

mathwang

几个经典不等式的关系

一 几个经典不等式

(1)均值不等式

设a1,a2,an0是实数

aaa12n 

111n+a1a2an

其中ai0,i1,2,n.当且仅当a1a2an时,等号成立.n

(2)柯西不等式

设a1,a2,an,b1,b2,bn是实数,则

a

22a2anb12b22bn2a1b1a2b2anbn

当且仅当bi0(i1,2,,n)或存在实数k,使得aikbi(i1,2,,n)时,等号成立.(3)排序不等式

设a1a2an,b1b2bn为两个数组,c1,c2,,cn是b1,b2,,bn的任一排列,则

a1b1a2b2anbna1c1a2c2ancna1bna2bn1anb1 当且仅当a1a2an或b1b2bn时,等号成立.(4)切比晓夫不等式

对于两个数组:a1a2an,b1b2bn,有

a1b1a2b2anbna1a2anb1b2bna1bna2bn1anb1



nnnn

当且仅当a1a2an或b1b2bn时,等号成立.二 相关证明

(1)用排序不等式证明切比晓夫不等式 证明:由

a1b1a2b2anbna1a2anb1b2bn



nnn

na1b1a2b2anbna1a2anb1b2bn

a1a2anb1b2bna1b1a2b2anbna1b2a2b3anb1a1b3a2b4anb2a1b4a2b5anb3

a1bn1a2bnanbn2

a1bna2b1anbn1

根据“顺序和乱序和”(在n1个部分同时使用),可得

na1b1a2b2anbna1a2anb1b2bn

即得

a1b1a2b2anbna1a2anb1b2bn



nnn

同理,根据“乱序和反序和”,可得

a1a2anb1b2bna1bna2bn1anb1



nnn

综合即证

(2)用排序不等式证明“几何—算数平均不等式”

证明:构造两个数列:

a1a2an

n

aaaa1aa,x2122,xn12nn1 ccc

1c1c21cn

y1,y2,yn1

x1a1x2a1a2xna1a2an

x1

其中c

.因为两个数列中相应项互为倒数,故无论大小如何,乘积的和:............................

x1y1x2y2xnyn

总是两数组的反序和.于是由“乱序和反序和”,总有 .........

x1ynx2y1xnyn1x1y1x2y2xnyn

于是

aa1a2

n111 ccc

a1a2an

n

c

即证

a1a2an

cn

a1a2an(3)用切比晓夫不等式证明“算数—开方平均不等式”

:

n证明:不妨设a1a2an,222

a1a2ana1a2ana1a2ana1a2an

.

nnnn

由切比晓夫不等式,右边不等式显然成立.即证.(4)用切比晓夫不等式证明“调和—算数平均不等式”

n+a1a2an

a1a2an

n

证明:

n111+a1a2an

a1a2an

n

111

+a1a2ana1a2an

nn



111

aaa12na1a2an

1.n



不妨设a1a2an,则

111,由切比晓夫不等式,1a1

(5)用均值不等式和切比晓夫不等式证明柯西不等式

证明:不妨设a1a2an,b1b2bn 由切比晓夫不等式,有

a1b1a2b2anbna1a2anb1b2bn

.nnn

由均值不等式,有

a1a2an

nb1b2bn

n所以

a1b1a2b2anbn

n

两边平方,即得a1b1a2b2anbna1a2an

b

22b2bn.即证.(6)补充“调和—几何平均不等式”的证明



aa2ananaa21

证明

1中的ai换成.1

na

inn

两边取倒数,即得

+a1a2an

初中柯西不等式证明篇四

自选专题

均值不等式与柯西不等式

【均值不等式】

例题1:已知x,y均为正数,且xy,求证:2x

例题2:已知x,y,z均为正数.求证:

变式:设x,y,z为正数,证明:2x3y3z3x2yzy2xzz

【柯西不等式】

例题1:若正数a,b,c满足abc1,求

变式:若x



21,32



12a

1

12b1

12c1

21x2xyy

2y3.

xyz

yzx

zxy

1x

1y

1z

xy.的最小值.

例题2:已知x,y,z是正数.

1若x2若

x

y1,求

x

2x

y

2y的最小值;

2x

y2y

z2z

1,求证:

x

2x

y

2y

z

2z

1.

自选专题 变式1:设a,b,c0,abc1,求证:

a2ab2bc2c35.

变式2:已知正数x,y满足xyzxyz,求

【能力提升】

1、设a,b,c均为正实数,求证:

1xy1yz2zx的最大值. 12a12b12c1bc1ac1ab.

2、设正数a,b,c满足abc3,求证:a

3、已知a,b,c0,,且abc1,求 1a3bcabbcca bc1b3ca1c3ab的最小值.

初中柯西不等式证明篇五

2013年高中数学ib模块选修4-5专题测试

(一)

试题内容:柯西不等式与排序不等式 试卷总分:120分考试时间:60分钟

一、选择题(共8小题,每题5分,共40分)

1、a,b,c,dr,不等式ab

2

c2d2acbd取等号的条件是()

2a.abdc0b.adbc0c.adbc0d.acbd0

2、设a1a2a3,b1b2b3,下列最小的是()

a.a1b3a2b2a3b1b.a1b1a2b2a3b3c.a1b2a2b1a3b3d.a1b1a2b3a3b

23、若四个实数a1,a2,a3,a4满足a2a1a3a2a4a31,则a3a4a1a2的最大值为 ()

a.1b

c.2d

4、a,b是非零实数,ab1,x1,x2r,max1bx2bx1ax2,nx1x2,则m与n的大小关

222

系为()

a.mnb.mnc.mnd.mn

5、若实数x,y满足(x5)(y12)14,则xy的最小值是()

a.2b.1c

d

6、x,y,zr,且x2y2z5,(x5)(y1)(z3)的最小值是()

a.20b.25c.36d.47

7、已知a,b,c,dr,且满足abcd

625()

a.25b.50c.

22222

2222

5d.625

8、已知0a,b,c1,且abc2,则abc的取值范围是()

a.,b.,2c.,2d.,2

333

3二、填空题(共5小题,每题4分,共20分)

9、x,y

0,1

4444的最大值是

10、设x,y,r,那么xy

11、设

14

的最小值是xy

2,那么x1,x2,x3,xn0,a1,a2,a3,an0,x1x2x3x1taxaxn1122

a3x32anxn2的最小值是

12、设2x3y4z22,(x,y,z0),则

三、解答题(共5小题,每题60分)

239

的最小值是,

b4c4c4a4a4b

413、(本小题10分)设a,b,cr,利用排序不等式证明:abc 

2a2b2c

314、(本小题10分)设x1,x2,x3是不同的自然数,求s

15、(本小题10分)设nn,n

2,利用柯西不等式证明:

16、(本小题10分)求函数y

x1x2x

3的最小值。149

41111。

7n1n22n12nsinx3cosx的值域

sinx2cosx

117、(本小题20分)(2012浙江考试院样卷)题号:03“数学史与不等式选讲”模块

(1)设a,b,c为实数,求证:a+b+c≥ab+bc+ca;(2)若正实数a,b,c满足abc=1,求

a4b(ac)

b4c(ab)

c4a(bc)的最小值.

2013年高中数学ib模块选修4-5专题测试

(一)

┄┄┄⊙

中学班级姓名 学号考号答 题 卷

一、选择题(每小题4分,共40分)

16.(本小题共12分)

17.(本小题20分)

2013年高中数学ib模块选修4-5专题测试

(一)

参 考 答 案

1.c2.a3.b4.a5.d6.c7.b8.c9.110.911.11

112.,2,2,3.

11112a1a2a3an

13证明:不妨设0abc,则abc,111

,cba

a4b4c4a4b4c

4abc(逆序和)

abccaba4b4c4a4b4c4

abc(逆序和)

abcbca

b4c4c4a4a4b4

abc

2a2b2c

14解:不妨设1x12x23,由排序不等式,s15.证明:由柯西不等式得

x1x2x312311

。1491496

1111

2n1n2nnnn1n22n12n

11112n4n1n22n12n3n17

1111

n1n22n12n111

又:

1111

2222

2n1

2nn1n2

111

nn1n1n22n12n

1

6、原式可化为

ysinx2cosx1sinx3cosx 即y(y1)sinx(2x3)cosx

利用柯西不等式及sin2xcos21可得

y2(y1)sinx(2x3)cosxsin2xcos2xy12y3

2

即y2y12y3 化简得

2y27y50

5

所以函数值域为(-,1),

2

17、“数学史与不等式选讲”模块

(1)证明1:因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,三式相加并除以2得a2+b2+c2≥ab+bc+ca.

(1)证明2:因为a2+b2+c2-ab-bc-ca=[(a-b)2+(b-c)2+(c-a)2]≥0,222

所以 a+b+c≥ab+bc+ca.…………5分

(2)解:由(1)及柯西不等式,均值不等式知

a4b(ac)

b4c(a

b)

a(b)c2(abbcca)

c4(a2b2c2)2

(a2+b2+c2)

a4b(ac),当且仅当a=b=c=1时等号成立,所以

b4c(ab)

c4a(bc)的最小值为

…………10分

初中柯西不等式证明篇六

2010年南师附中数学研究性学习撰稿人 高一九班 陈点

柯西不等式和排序不等式的多种证明方法(课本延伸课题18)——2010.4 数学研究性学习撰写人 陈点

柯西不等式的一般式:

适用范围:证明不等式、解三角形、求函数最值、解方程等问题。接下来我将以几种较为主流的证明方法来证明: 求证:(∑ai^2)(∑bi^2)≥(∑ai〃bi)^2证法一(代数证明,运用二次函数,最主流证法):

当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立 令a=∑ai^2 b=∑ai〃bi c=∑bi^2

当a1,a2,…,an中至少有一个不是零时,可知a>0 构造二次函数f(x)=ax^2+2bx+c,f(x)=∑(ai^2〃x^2+2ai〃bi〃x+bi^2)=∑(ai〃x+bi)^2≥0f(x)的判别式△=4b^2-4ac≤0,移项得ac≥b^2,证毕。

证法二(其中几个特殊情况,为2与3时即向量公式)

n=1时,a1^2〃b1^2≥(a1b1)^2(这个…不解释)a1=a2=a3=…=an,b1=b2=b3=…=bn时同此证

n=2时,即为(a1^2+a2^2)(b1^2+b2^2)≥(a1b1+a2b2)^2

即(a1b1)^2+(a1b2)^2+(a2b1)^2+(a2b2)^2≥(a1b1)^2+(a2b2)^2+2a1b1a2b2 即(a1b2)^2+(a2b1)^2≥2a1b1a2b2

因为a2≥a1,b2≥b1,乱序和≥倒序和

故一定成立(呵呵,还一不小心把排序不等式引出来了)

证法三(这个是网上找的很权威的数学归纳法,因为我想出来的证法二是其铺垫,故引用说明。数学归纳法也是一种非常常见且正规的证明方法。)(1)当n1时左式=a1b1右式=a1b1 显然左式=右式

2当 n2时,右式 a12a2b12b22a1b1a2b2a22b12a12b22

a1b1a2b22a1a2b1b2a1b2a2b2右式

222

仅当即 a2b1a1b2 即

a1a2

时等号成立 b1b2

故n1,2时 不等式成立

(2)假设nkk,k2时,不等式成立

2kak即 a1b1a2b2akbka12a2b12b22bkk

当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立

222

bk2 ak设a12a2b12b2

ca1b1a2b2akbk

则ak21bk21bk21ak1bk1 22c22cak1bk1ak1bk1cak1bk1 2222222

akaka12a21b1b2bkbk1

a1b1a2b2akbkak1bk1

当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立

即nk1时不等式成立

综合(1)(2)可知不等式成立

其实还有很多证明的方法,证明柯西不等式还可以利用比值法,归纳法,归纳法与综合法,归纳法与平均值不等式,排序不等式,参数平均值不等式,行列式,内积(向量)法,构造单调数列,凹凸函数法(来自奥数老师)……再者,拉格朗日恒等式也相当简单,在此不一一说明,可见证明此式方法之多。

柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题: 1)证明相关命题 2)证明不等式 3)解三角形的相关问题 4)求最值

5)利用柯西不等式解方程

6)用柯西不等式解释样本线性相关系数(这个完全不理解,不过有这么一说)

排序不等式(又称)

简单来说,就是:反序和≤乱序和≤同序和

即a1b1a2b2anbna1c1a2c2ancna1bna2bn1anb1

其中,cn为乱序数列。

证明:1.证乱序和小于正序和,以下证明中原式为乱序和

从第一个起,将a1b?与a?b1转变为a1b1与a?b?,设其为x,y,则有

a1b1+axby-a1bx+ayb1≧0(因为x,y≧1,根据等式的性质可得),然后

再往下,第二个a2bw与azb2…… 以此类推,到最后得出的式子为正序和,因为每步的过程均使原式减小或不变,故终式不小于原式2.证乱序和大于倒序和

从第一个起,将a1b?与a?bn转变为a1bn与a?b?, 设其为x,y,则有a1b1+axby-a1bx+ayb1≦0(因为x≧1,y≦n)故成立,基本上同理

排序不等式证明的关键在于有顺序的变化,每次变化使式子朝一个方向发展,这样就可轻易推出最终的结论。

应用:

1.排序不等式的基本应用。排序不等式在解决一些常见不等式时,具有简单直观的特点

2.证明不等式时两次或多次运用排序不等式,将结果相加,也是常见方法。 3.经过适当变形后再运用排序不等式的问题,常见于一些比较难的习题或竞赛题

拓展:

排序不等式的另一种表述形式 设

a1a2an,b1b2bn

c,c,,cnb1,b2bn

为两组实数,12是的任一排

列,则三个矩阵

a1a2ana1a2ana1a2anbbbbbbccc

12n12nnn11a:b:c:

我们称a为顺序矩阵,b为乱序矩阵,c为反序矩阵 它们的列积和(同列相乘再相加):

a1b1a2b2anbna1c1a2c2ancna1bna2bn1anb1

即:顺序和乱序和反序和

在此,我们没必要知道矩阵的更多知识,而只是利用它这种形式。因为它更直观,便于在解题中寻找数列

b1,b2,bn的一个我们需要的乱序,更易掌握和应用。

⑴柯西不等式的向量说法:|α||β|≥|α〃β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈n,n≥2)

等号成立条件:β为零向量,或α=λβ(λ∈r)。⑵数学归纳法(这里说的是第一数学归纳法):

即一般地,证明一个与正整数n有关的命题,有如下步骤:1)证明当n取第一个值时命题成立;

2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

⑶拉格朗日恒等式:

初中柯西不等式证明篇七

柯西不等式的证明

数学上,柯西-施瓦茨不等式,又称施瓦茨不等式或柯西-布尼亚科夫斯基-施瓦茨不等式,是一条很多场合都用得上的不等式;例如线性代数的矢量,数学分析的无穷级数和乘积的积分,和概率论的方差和协方差。不等式以奥古斯丁·路易·柯西(augustin louis cauchy),赫尔曼·阿曼杜斯·施瓦茨(hermann amandus schwarz),和维克托·雅科夫列维奇·布尼亚科夫斯基(виктор яковлевич буняковский)命名。柯西不等式(cauchy inequality):对任意的实数a1,a2,⋯,an,b1,b2,⋯,bn,都有

(a21+a22+⋯+a2n)(b21+b22+⋯+b2n)≥(a1b1+a2b2+⋯+anbn)2

证明一:(数学归纳法)当n=2时,(a21+a22)(b21+b22)−(a1b1+a2b2)2=(a1b2−b1a2)2≥0 所以n=2时,(a21+a22)(b21+b22)≥(a1b1+a2b2)2 假设n时命题成立,则n+1时

(a21+a22+⋯+a2n+a2n+1)(b21+b22+⋯+b2n+b2n+1)≥((a21+a22+⋯+a2n)(b21+b22+⋯+b2n)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√+|an+1bn+1|)2

又由条件假设

(a21+a22+⋯+a2n)(b21+b22+⋯+b2n)≥(a1b1+a2b2+⋯+anbn)2

所以

((a21+a22+⋯+a2n)(b21+b22+⋯+b2n)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√+|an+1bn+1|)2

≥(|a1b1+a2b2+⋯+anbn|+|an+1bn+1|)2

很明显有

(|a1b1+a2b2+⋯+anbn|+|an+1bn+1|)2≥(a1b1+a2b2+⋯+anbn+an+1bn+1)2

因此n+1时命题也成立,由数学归纳法,命题得证.证明二:(构造二次函数)如果a1,a2,⋯,an都为0,那么此时不等式明显成立.如果a1,a2,⋯,an不全为0,那么a21+a22+⋯+a2n>0

构造二次函数f(x)=(a21+a22+⋯+a2n)x2+2(a1b1+a2b2+⋯+anbn)x+(b21+b22+⋯+b2n)那么此时f(x)=(a1x+b1)2+⋯+(anx+bn)2≥0对任意的实数x都成立,所以这个二次函数的判别式应该是不大于0的,也就是

δ=4(a1b1+a2b2+⋯+anbn)2−4(a21+a22+⋯+a2n)(b21+b22+⋯+b2n)≤0

从而不等式得证.证明三:(恒等变形)注意到恒等式

(a21+a22+⋯+a2n)(b21+b22+⋯+b2n)−(a1b1+a2b2+⋯+anbn)2 =∑1≤i

所以不等式成立.证明四:(均值不等式)不妨设ai,bi不全为0,理由同证明二

a21+a22+⋯+a2n=s,b21+b22+⋯+b2n=t

那么由均值不等我们有

a2is+b2it≥2∣∣aibi∣∣st√

对i从1到n求和,可以得到

∑i=1na2is+∑i=1nb2it≥2∑i=1n|aibi|st−−−√

于是

2≥2∑i=1n|aibi|st−−−√≥2∣∣∣∑i=1naibist−−−√∣∣∣

得到

(a21+a22+⋯+a2n)(b21+b22+⋯+b2n)≥(a1b1+a2b2+⋯+anbn)2

现在我们由证法二来得到等号成立条件,如果等号成立,那么f(x)能取到0,也就是说存在一个x使得 aix+bi=0对任意的i=1,2,⋯,n都成立,这就是等号成立条件,在a1a2⋯an≠0时,可以将它写成b1a1=b2a2=⋯=bnan.变形式(a)设ai∈r,bi>0(i=1,2⋯,n),则∑i=1na2ibi≥(∑ai)2∑bi.变形式(b)设ai,bi同号且不为零(i=1,2⋯,n),则∑i=1naibi≥(∑ai)2∑aibi.

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 精品推荐
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整
总结是对过去种种经历的汇总,也是为了更好地迎接未来挑战的准备。如何与他人建立良好的沟通和合作关系?以下是一些精选的总结样本,供大家参考和学习。不等式与不等式组教
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编为大家
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧对外
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编为大家收集的优
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?又该怎么写呢?这里我给大家分享一些最新的教案范
就业问题是指劳动者在就业过程中遇到的种种问题和困境。正确的总结方法是将问题和解决方案进行对比和分析。以下是一些学习总结的例子,希望能对同学们的学习有所帮助。岗位
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么我们该如何写一篇较为完美的教案呢?下面是小编为大家带来的优秀教案范
当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。那么你知道心得体会如何写吗?下面是小编帮大家整理的优秀心得体会范文,供大家参考借
教案的编写应根据不同年级、学科和教学内容的特点进行灵活调整。在制定教案时应该考虑学生的具体学习情况。鼓励大家根据这些教案范文的思路和方法进行创新和改进。初一数学
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。总经理岗位职责及能力要
通过总结心得体会,我们可以更好地规划和安排未来的学习和工作。写心得体会时要注意表达准确、简洁,言之有物。以下是小编为大家精选的心得体会范文,供大家参考和借鉴。团
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编帮大家整理的优
演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。演讲稿对于我们是非常有帮助的,可是应该怎么写演讲稿呢?那么下面我就给大家讲一讲演讲稿怎么写
演讲,首先要了解听众,注意听众的组成,了解他们的性格、年龄、受教育程度、出生地,分析他们的观点、态度、希望和要求。掌握这些以后,就可以决定采取什么方式来吸引听众
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。优质的心得体会该怎么样去写呢?以下是我帮大家整理的最新心得
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。管理人
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优
我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。那么心得体会该怎么写?想必这让大家都很苦
作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是我给大家整理的教案范文,
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编为大家带来的优秀教案范文
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面我帮大家找寻并整
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集的教案范文
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编帮大家整理的优
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧电工技师履
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面是
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?以下是小编为大家收集的优
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。公交司
作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。大家想知道怎么样才能写一篇比较优质的教案吗?以下我给大家整理了一些优质的教案范文
随着个人素质的提升,报告使用的频率越来越高,我们在写报告的时候要注意逻辑的合理性。优秀的报告都具备一些什么特点呢?又该怎么写呢?下面是小编给大家带来的报告的范文
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?以下是小编帮大家
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面
心得体会是个人对学习和工作中遇到的问题及解决方法的思考和总结。写心得体会时可以运用一些修辞手法,增强文章的感染力和吸引力。看看他人的心得体会,可以开拓我们的文化
当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面小编给大家带来关
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面是
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。建
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲教案怎么写才比较好,
调查报告是一种通过数据统计和分析得出的结论和建议,它能够提供客观的研究结果。总结不只是对事情的简单归纳,还要有对过程的回顾和对成果的评价。总结范文中的案例和观点
当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。那么我们写心得体会要注意的内容有什么呢?下面是小编帮大家整
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。既然教案这么重要,那到底该怎么写一篇优质的教案呢?下面我帮大家找寻并整
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么我们该如何写一篇较为完美的教案呢?这里我给大家分享一些最新的教案范文,方便
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么我们该如何写一篇较为完美的教案呢?以下是小编收集整理的教案范文,仅供参考,希望
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。大家想知道怎么样才能写一篇比较优质的教案吗?以下是小编为大家收集的教案范文,仅
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编为大家收集的优
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集的教案范文,
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面是小编为大家
教案能够指导教师进行系统的教学,确保教学目标的达成。教案的编写要充分利用多种教学资源,提高教学的多样性和趣味性。以下是一些典型教案的案例,希望对大家的教学工作有
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编带
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么制定才合适呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。大家想知道怎么样才能写一篇比较优质的教案吗?以下是小编收集整
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编带来的优秀教案范文,希望大家
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么制定才合适呢?以下是小编收集整理的教案范文,仅供参考,希望能够
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。大家想知道怎么样才能写一篇比较优质的教案吗?那么下面我就给大家讲一讲教案怎么写才比较好,我
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编为大家收集的优
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧与岗
总结不仅仅是对成绩或者经历的简单罗列,更是对其中的经验和启示进行深入思考的过程。在写总结时,需要注重思考总结的目的和内容,使其有针对性和实质性。以下是小编为大家
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面我帮大家找寻并整理了一些
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整
教案应该包括教学活动的组织安排、教学步骤的详细说明和教学资源的准备。教案应与教材紧密结合,使学生能够真正掌握教材内容。高质量的教案可以提高教学效果,培养学生的学
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。那么教案应该怎么制定才合适呢?以下我给大家整理了一些优质的教
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。大家想知道怎么样才
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面我帮大家找寻并整理了一些优秀的教
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧初中
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?这里我给大家分享一些最新的教案范文,方便
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一
a.付费复制
付费获得该文章复制权限
特价:2.99元 10元
微信扫码支付
b.包月复制
付费后30天内不限量复制
特价:6.66元 10元
微信扫码支付
联系客服