当前位置:网站首页 >> 文档 >> 2023年函数极限证明格式 函数极限定义证明例题(五篇)

2023年函数极限证明格式 函数极限定义证明例题(五篇)

格式:DOC 上传日期:2024-12-05 22:05:35
2023年函数极限证明格式 函数极限定义证明例题(五篇)
    小编:文轩

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

函数极限证明格式 函数极限定义证明例题篇一

|xn+1-a|

|x2-a|

①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1);设x(k+1)>x(k),则

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化)=[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。②证明{x(n)}有上界。x(1)=1

x(k+1)=√[2+3x(k)]1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1)则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x/(t^x)](分子分母分别求导)=lim(x→+∞)1/(t^x*lnt)=1/(+∞)=0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明

3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞

(2)lim[(3n+1)/(2n+1)]=3/2 n→∞

(3)lim[根号(n+1)-根号(n)]=0 n→∞

(4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。lim就省略不打了。。

函数极限证明格式 函数极限定义证明例题篇二

习题

1.按定义证明下列极限:

(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x

x251;(4)lim(3)lim2xx1x2

(5)limcos x = cos x0 xx04x2=0;

2.根据定义2叙述limf (x)≠ a.xx0

3.设limf (x)= a.,证明limf(x0+h)= a.xx0h0

4.证明:若limf (x)= a,则lim| f(x)| = |a|.当且仅当a为何值时反之也成立? xx0xx0

5.证明定理3.1

6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x

x;(2)f(x)= [x]

2x;x0.(3)f(x)=0;x0.1x2,x0.

7.设 limf(x)= a,证明limf(xxx01)= a x

8.证明:对黎曼函数r(x)有limr (x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0

习题

1. 求下列极限:

x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22

x21x113x;

lim(3)lim;(4)

x12x2x1x0x22x3

xn1(5)limm(n,m 为正整数);(6)lim

x1xx41

(7)lim

x0

2x3x2

70;

a2xa3x68x5.(a>0);(8)lim

xx5x190

2. 利用敛性求极限:(1)lim

x

xcosxxsinx

;(2)lim2

x0xx4

xx0

3. 设 limf(x)=a, limg(x)=b.证明:

xx0

(1)lim[f(x)±g(x)]=a±b;

xx0

(2)lim[f(x)g(x)]=ab;

xx0

(3)lim

xx0

f(x)a

=(当b≠0时)g(x)b

4. 设

a0xma1xm1am1xam

f(x)=,a0≠0,b0≠0,m≤n,nn1

b0xb1xbn1xbn

试求 limf(x)

x

5. 设f(x)>0, limf(x)=a.证明

xx0

xx0

lim

f(x)=a,其中n≥2为正整数.6.证明limax=1(0n

x0

7.设limf(x)=a, limg(x)=b.xx0

xx0

(1)若在某∪(x0)内有f(x)

(2)证明:若a>b,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim 

x0

x

x11

lim;(2);nnx0x1xx1x

xx2xnn

(3)lim;(4)lim

x0x0x1

x1

x

(5)lim

x

x(提示:参照例1)

x

x0

x0

x0

9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)?

x0

x0

x0

习题

1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n

n

2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n

[a,+)上有上(下)界.3.(1)叙述极限limf (x)的柯西准则;

n

(2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n

n

4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都

n

n

存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

0xu

x0

0xun(x0)

inff(x)

6.设 d(x)为狄利克雷函数,x0∈r证明limd(x)不存在.xx0

7.证明:若f为周期函数,且limf(x)=0,则f(x)=0

x

8.证明定理3.9

习题

1.求下列极限

sin2xsinx3

(1)lim;(2)lim

x0x0sinx2x

(3)lim

x

cosxx

tanxsinxarctanx

lim(5)lim;(6);3x0x0xx

sin2xsin2a1

(7)limxsin;(8)lim;

xxaxxa

;(4)lim

x0

tanx

;x

cosx2

(9)lim;(10)lim

x0x01cosxx11

sin4x

2.求下列极限

12x

(1)lim(1);(2)lim1axx(a为给定实数);

nx0x

x

(3)lim1tanx

x0

cotx

;(4)lim

1x

;

x01x

(5)lim(x

3x22x1);(6)lim(1)x(,为给定实数)

n3x1x

3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限: (1)limnsin

n

x0n



x2

xxcos1 2n22

n

;(2)

习题

1. 证明下列各式

(1)2x-x2=o(x)(x→0);(2)x sinxo(x)(x→0);

+

(3)x1o(1)(x→0);

(4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=o(x3)(x→∞);

(6)o(g(x))±o(g(x))=o(g(x))(x→x0)

(7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限:

x21x(1)lim(2)lim x01cosxxxcosx

x3. 证明定理3.13

4. 求下列函数所表示曲线的渐近线:

13x34

(1)y =;(2)y = arctan x;(3)y = 2

xx2x

5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量:

(1)sin2x-2sinx;(2)

-(1-x);1x

(3)tanxsinx;(4)

x24x3

6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量:

(1)

x2x5;(2)x+x2(2+sinx);

(3)(1+x)(1+x2)…(1+xn).7. 证明:若s为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞)

8. 证明:若f为x→r时的无穷大量,而函数g在某u0(r)上满足g(x)≥k>0,则fg为x→r

时的无穷大量。

9. 设 f(x)~g(x)(x→x0),证明:

f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

总 练习题

1. 求下列极限:

1

(x[x])lim([x]1)(1)lim;(2)

x3

x1

(3)lim(x

axbxaxbx)

xxa

(4)lim

x

(5)lim

xxa

x

(6)lim

xxxx

x0

(7)lim

nm,m,n 为正整数 nx11xm1x

2. 分别求出满足下述条件的常数a与b:

x21

(1)limaxb0 xx1

x(3)limx

(2)lim

xxx2

x1axb0

x1axb0

x2

3. 试分别举出符合下列要求的函数f:

(1)limf(x)f(2);(2)limf(x)不存在。

4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0

局部保号性有矛盾吗?

5. 设limf(x)a,limg(u)b,在何种条件下能由此推出

xa

ga

limg(f(x))b?

xa

6. 设f(x)=x cos x。试作数列

(1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列:

(1)limanr1

n

(2)lim

an1

s1(an≠0,n=1,2,…)

nan

n2

n2

8. 利用上题(1)的结论求极限:

(1)lim1

n

11(2)lim1

nnn

9. 设liman,证明

n

(1)lim

(a1a2an) nn

n

(2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限:

(1)limn!(2)lim

n

in(n!)

nn

11.设f为u-0(x0)内的递增函数。证明:若存在数列{xn}u-0(x0)且xn→x0(n→∞),使得

limf(xn)a,则有

n

f(x0-0)=

supf(x)a

0xu(x0)

12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)a。证明:f(x)a,x∈(0,+∞)

x

13.设函数f在(0,+∞)此上满足方程f (x2)= f(x),且

f(x)=limf(x)f(1)lim

x0

x

证明:f(x)f(1),x∈(0,+∞)

14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足

x

lim(f(x1)f(1))a证明

x

lim

f(x)

a x

函数极限证明格式 函数极限定义证明例题篇三

函数极限的性质证明

x1=2,xn+1=2+1/xn,证明xn的极限存在,并求该极限

求极限我会

|xn+1-a|

以此类推,改变数列下标可得|xn-a|

|xn-1-a|

……

|x2-a|

向上迭代,可以得到|xn+1-a|

2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√-√(分子有理化)

=/【√+√】>0。

②证明{x(n)}有上界。

x(1)=1

设x(k)

x(k+1)=√

3当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>

1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim=0

n→∞

(2)lim=3/2

n→∞

(3)lim=0

n→∞

(4)lim0.999…9=1

n→∞n个9

5几道数列极限的证明题,帮个忙。。lim就省略不打了。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0

函数极限证明格式 函数极限定义证明例题篇四

习题13

1.根据函数极限的定义证明:

(1)lim(3x1)8;x3

(2)lim(5x2)12;x2

x244;(3)limx2x2

14x3

(4)lim2.x2x12

1证明(1)分析 |(3x1)8||3x9|3|x3|, 要使|(3x1)8| , 只须|x3|.3

1证明 因为 0, , 当0|x3|时, 有|(3x1)8| , 所以lim(3x1)8.x33

1(2)分析 |(5x2)12||5x10|5|x2|, 要使|(5x2)12| , 只须|x2|.5

1证明 因为 0, , 当0|x2|时, 有|(5x2)12| , 所以lim(5x2)12.x25

(3)分析

|x(2)|.x24x24x4x24(4)|x2||x(2)|, 要使(4), 只须x2x2x2

x24x24(4), 所以lim4.证明 因为 0, , 当0|x(2)|时, 有x2x2x2

(4)分析 14x31114x312, 只须|x()|.2|12x2|2|x()|, 要使2x12x1222

14x31114x3

2, 所以lim证明 因为 0, , 当0|x()|时, 有2.12x12x122x2.根据函数极限的定义证明:

(1)lim1x3

2x3

sinxx1;2(2)limxx0.证明(1)分析

|x|1

1x32x311x3x322x312|x|3, 要使1x32x311, 只须, 即322|x|2.证明 因为 0, x(2)分析

sinxx0

12, 当|x|x时, 有1x

1x32x311x31, 所以lim.x2x322

1x

, 即x

sinxx

|sinx|x

, 要使

sinx

证明 因为0, x

2, 当xx时, 有

xsinxx

0, 只须

.0, 所以lim

x

0.3.当x2时,yx24.问等于多少, 使当|x2|n

解 由于x2, |x2|0, 不妨设|x2|1, 即1x3.要使|x24||x2||x2|5|x2|0.001, 只要

|x2|

0.001

0.0002, 取0.0002, 则当0|x2|时, 就有|x24|0.001.5

x21x

34.当x时, y

x21x23

1, 问x等于多少, 使当|x|>x时, |y1|n

解 要使1

4x23

0.01, 只|x|

3397, x.0.01

5.证明函数f(x)|x| 当x0时极限为零.x|x|

6.求f(x), (x)当x0时的左﹑右极限, 并说明它们在x

证明 因为

x

limf(x)limlim11,x0x0xx0x

limf(x)limlim11,x0x0xx0limf(x)limf(x),

x0

x0

所以极限limf(x)存在.x0

因为

lim(x)lim

x0

x0

|x|x

lim1,x0xx|x|xlim1,xx0x

lim(x)lim

x0

x0

lim(x)lim(x),

x0

x0

所以极限lim(x)不存在.x0

7.证明: 若x及x时, 函数f(x)的极限都存在且都等于a, 则limf(x)a.x

证明 因为limf(x)a, limf(x)a, 所以>0,x

x

x10, 使当xx1时, 有|f(x)a|;x20, 使当xx2时, 有|f(x)a|.取xmax{x1, x2}, 则当|x|x时, 有|f(x)a| , 即limf(x)a.x

8.根据极限的定义证明: 函数f(x)当xx0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性.设f(x)a(xx0), 则>0, 0, 使当0n

|f(x)a|n

因此当x0n

|f(x)a|n

这说明f(x)当xx0时左右极限都存在并且都等于a.再证明充分性.设f(x00)f(x00)a, 则>0,1>0, 使当x010, 使当x0n

取min{1, 2}, 则当0n

| f(x)a|n

即f(x)a(xx0).9.试给出x时函数极限的局部有界性的定理, 并加以证明.解 x时函数极限的局部有界性的定理 如果f(x)当x时的极限存在 则存在x0及m0 使当|x|x时 |f(x)|m

证明 设f(x)a(x) 则对于 1 x0 当|x|x时 有|f(x)a| 1 所以|f(x)||f(x)aa||f(x)a||a|1|a|

这就是说存在x0及m0 使当|x|x时 |f(x)|m 其中m1|a|

函数极限证明格式 函数极限定义证明例题篇五

二元函数极限证明

二元函数极限证明

设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。

此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。

我们必须注意有以下几种情形:’

(1)两个二次极限都不存在而二重极限仍有可能存在(2)两个二次极限存在而不相等

(3)两个二次极限存在且相等,但二重极限仍可能不存在 2 函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0)根据定义:对任意ε>0,存在δ>0,使当|x-x0|

而|x-x0|

又因为ε有任意性,故可取ε=1,则有:|f(x)-a|0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)| 证毕

3首先,我的方法不正规,其次,正确不正确有待考察。

1 / 29

二元函数极限证明

1,y以y=x^2-x的路径趋于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。

2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。

4 f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)显然有y->0,f->(x^2/|x|)*sin(1/x)存在当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在而当x->0,y->0时

由|sin(1/x)|0,y->0时,f的极限就为0 这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的正无穷或负无穷或无穷,我想这个就可以了 就我这个我就线了好久了 5

2 / 29

二元函数极限证明

(一)时函数的极限: 以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限: 由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由= 为使需有为使需有于是,倘限制,就有 例7验证例8验证(类似有(三)单侧极限: 1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系: th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有

3 / 29

二元函数极限证明

=§2函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性: 2.局部有界性: 3.局部保号性: 4.单调性(不等式性质): th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)註:若在th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性: 6.四则运算性质:(只证“+”和“”)

4 / 29

二元函数极限证明

(二)利用极限性质求极限:已证明过以下几个极限: (注意前四个极限中极限就是函数值)这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)例2例3註:关于的有理分式当时的极限.例4 例5例6例7 §2二元函数的极限(一)教学目的:

掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系.

(二)教学内容:二元函数的极限的定义;累次极限. 基本要求:

(1)掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系,熟悉判别极限存在性的基本方法.

(2)较高要求:掌握重极限与累次极限的区别与联系,能用来处理极限存在性问题.

5 / 29

二元函数极限证明

(三)教学建议:

(1)要求学生弄清一元函数极限与多元函数极限的联系与区别,教会他们求多元函数极

限的方法.

(2)对较好学生讲清重极限与累次极限的区别与联系,通过举例介绍判别极限存在性的较完整的方法.

一二元函数的极限

先回忆一下一元函数的极限:limf(x)?a的“???”定义(c31): x?x0 0设函数f(x)在x0的某一空心邻域u(x0,?1)内由定义,如果对 ???0,当

x?u(x0,?),即

|x?x0|??

时,都

有|f(x)?a|??,???0,???1,则称x?x0时,函数f(x)的极限是a.类似的,我们也可以定义二元函数的极限如下:

设二元函数f(x,y)为定义在d?r2上的二元函数,在点p0(x0,y0)为d的一个聚点,a是一个确定的常数,如果对???0,???0,使得当p(x,y)?u(p0,?)?d时,0都有|f(p)?a|??,则称f在d上当p?p0时,以a为极限。记作

p?p0p?dlimf(p)?a

6 / 29

二元函数极限证明

也可简写为limf(p)?a或 p?p0(x,y)?(x0,y0)2limf(x,y)?a例1用定义验证 2lim(x,y)?(2,1)2(x?xy?y)?7222明:|x?xy?y?7|?|x?x?6?xy?x?y?1| ?|x?3||x?2|?|x?y?1||y?1| 限制在(2,1)的邻域{(x,y)||x?2|?1,|y?1|?1} |x?3|?6, |x?y?1|?6 取??min{1,?/6},则有 |x?xy?y|?? 由二元函数极限定义lim(x,y)?(2,1)(x?xy?y)?7 22 22 ?x?y ,(x,y)?(0,0)?xy22 例2f(x,y)??x?y,?0,(x,y)?(0,0)?

7 / 29

二元函数极限证明

证明lim(x,y)?(0,0)f(x,y)?0 x?yx?y 22 22 证|f(x,y)|?|xy 所以 lim(x,y)?(0,0)|?|xy| lim(x,y)?(0,0)|f(x,y)|?lim(x,y)?(0,0)|xy|?0 |f(x,y)|?0 对于二元函数的极限的定义,要注意下面一点: p?p0

8 / 29

二元函数极限证明

limf(p)?a是指:p(x,y)以任何方式趋于p0(x0,y0),包括沿任何直线,沿任

何曲线趋于p0(x0,y0)时,f(x,y)必须趋于同一确定的常数。对于一元函数,x仅需沿x轴从x0的左右两个方向趋于x0,但是对于二元函数,p趋于p0的路线有无穷多条,只要有两条路线,p趋于p0时,函数f(x,y)的值趋于不同的常数,二元函数在p0点极限就不存在。

?1,0?y?x2 例1二元函数f(x,y)?? ?0,rest 请看图像(x62),尽管p(x,y)沿任何直线趋于原点时f(x,y)都趋于零,但也不能说该函数在原点的极限就是零,因为当p(x,y)沿抛物线y?kx,0?k?1时,f(x,y)的值趋于1而不趋于零,所以极限不存在。

(考虑沿直线y?kx的方向极限).?x2y ,? 例2设函数f(x,y)??x2?y2 ?0,?(x.,y)?(0,0)(x,y)?(0,0)求证limf(x,y)?0

9 / 29

二元函数极限证明

x?0 y?0 证明因为|f(x,y)?0|? x|y|x?y ? x|y|x ?|y| 所以,当(x,y)?(0,0)时,f(x,y)?0。

请看它的图像,不管p(x,y)沿任何方向趋于原点,f(x,y)的值都趋于零。

通常为证明极限limf(p)不存在,可证明沿某个方向的极限不存在,或证明沿某两

p?p0 个方向的极限不相等,或证明方向极限与方向有关.但应注意,沿任何方向的极限存在且相等??全面极限存在.例3 设函数

(x,y)?(0,0)(x,y)?(0,0)?xy ,?22 f(x,y)??x?y

10 / 29

二元函数极限证明

?0,? 证明函数f(x,y)在原点处极限不存在。证明尽管p(x,y)沿x轴和y轴

趋于原点时(f(x,y)的值都趋于零,但沿直线y?mx趋于原点时 x?mxx?(mx)f(x,y)?? mx 22(1?m)x ? m1?m 沿斜率不同的直线趋于原点时极限不一样,请看它的图象,例1沿任何路线趋于原点时,极

限都是0,但例2沿不同的路线趋于原点时,函数趋于不同的值,所以其极限不存在。

例4 非正常极限极限 lim(x,y)?(x0,y0)

11 / 29

二元函数极限证明

判别函数f(x,y)? xy?1?1x?y 在原点是否存在极限.f(x,y)???的定义: 12x?3y 例1设函数f(x,y)?证明limf(x,y)?? x?0y?0 证| 12x?3y |?| 13(x?y)| 只要取?? 16m |x?0|??,|y?0|??时,都有 | 12x?3y16? 22 |?| 13(x?y)

12 / 29

二元函数极限证明

| ??m 12x?3y 请看它的图象,因此是无穷大量。例2求下列极限:i)lim xyx?y 22;ii)(x,y)?(0,0)(x,y)?(3,0)lim sinxyy;iii)(x,y)?(0,0)lim xy?1?1xy;iv)(x,y)?(0,0)lim

13 / 29

二元函数极限证明

ln(1?x?y)x?y 22.二.累次极限:累次极限

前面讲了p(x,y)以任何方式趋于p0(x0,y0)时的极限,我们称它为二重极限,对于两个自变量x,y依一定次序趋于x0,y0时f(x,y)的极限,称为累次极限。对于二元函数f(x,y)在p0(x0,y0)的累次极限由两个

limlimf(x,y)和limlimf(x,y)y?y0x?x0 x?x0y?y0 例1 f(x,y)? xyx?yx?yx?y 222 ,求在点(0,0)的两个累次极限.22 例2f(x,y)?,求在点(0,0)的两个累次极限.例3f(x,y)?xs(请你支持:)in

14 / 29

二元函数极限证明

1y ?ysin 1x ,求在点(0,0)的两个累次极限.二重极限与累次极限的关系:(1)两个累次极限可以相等也可以不相等,所以计算累次极限

例函数f(x,y)? x?y?x?y x?y 22 的两个累次极限是y?yyx?xx 22 limlim x?y?x?y x?yx?y?x?y x?y y?0x?0 ?lim y?0

15 / 29 时一定要注意不能随意改变它们的次序。二元函数极限证明

?lim(y?1)??1 y?0 ?lim(x?1)?1 x?0 limlim x?0y?0 ?lim x?0(2)两个累次极限即使都存在而且相等,也不能保证二重极限存在例f(x,y)? xyx?y xyx?y,两个累次极限都存在 limlim y?0x?0 ?0,limlim xyx?y x?0y?0 ?0

16 / 29

二元函数极限证明

但二重极限却不存在,事实上若点p(x,)沿直线y?kx趋于原点时,kx f(x,y)? x?(kx)? k1?k 二重极限存在也不能保证累次极限存在二重极限存在时,两个累次极限可以不存在.例函数f(x,y)?xsin 1y?ysin 1x 由|f(x,y)|?|x|?|y|?0,(x,y)?(0,0).可见二重极限存在,但 1x limsin x?0 和limsin y?0 1y 不存在,从而两个累次极限不存在。(4)二重极限极限lim

17 / 29

二元函数极限证明

(x,y)?(x0,y0)f(x,y)和累次极限limlimf(x,y)(或另一次序)都存 x?x0y?y0 在,则必相等.(证)(5)累次极限与二重极限的关系

若累次极限和二重极限都存在,则它们必相等 二元函数极限的研究 作者:郑露遥指导教师:杨翠

摘要函数的极限是高等数学重要的内容,二元函数的极限是一元函数极限的基础上发展起来的,本文讨论了二元函数极限的定义、二元函数极限存在或不存在的判定方法、求二元函数极限的方法、简单讨论二元函数极限与一元函数极限的关系以及二元函数极限复杂的原因、最后讨论二重极限与累次极限的关系。

关键词二元函数极限、累次极限、二重极限、连续性、判别法、洛必达法则、运算定理

1引言

函数的极限是高等数学中非常重要的内容,关于一元函数的极限及其求法,各种教材中都有详尽的说明。二元函数极限是在一元函数极限的基础上发展起来的,两者之间既有联系又有区别。例如,在极运算法则上,它们是一致的,但随着变量个数的增加,二元函数极限比一元函数

18 / 29

二元函数极限证明

极限变得复杂得多,但目前的各类教材、教学参考书中有关二元函数极限的求法介绍不够详二元函数的极限是反映函数在某一领域内的重要属性的一个基本概念,它刻划了当自变量趋向于某一个定值时,函数值的变化趋势。是高等数学中一个极其重要的问题。但是,一般来说,二元函数的极限比起一元函数的极限,无论从计算还是证明都具有更大的难度。本文就二元函数极限的问题作如下探讨求一元函数的极限问题,主要困难多数集中于求未定型极限问题,而所有未定型的极限又总可转化为两类基本型即00与∞∞型,解决这两类基本未定型的有力工具是洛泌达(lhospital)法则。类似地,二元函数基本未定型的极限问题也有相似的洛泌达法则。为了叙述上的方便,对它的特殊情形(即(x0,y0)=(0,0))作出如下研究,并得到相应的法则与定理。二元函数的极限是反映函数在某一领域内的重要属性的一个基本概念,它刻划了当自变量趋向于某一个定值时,函数

值的变化趋势。是高等数学中一个极其重要的问题。但是,一 般来说,二元函数的极限比起一元函数的极限,无论从计算还 是证明都具有更大的难度。本文就二元函数极限的问题作如 下探讨。

§2.3二元函数的极限与连续 定义

设二元函数有意义,若存在19 / 29

二元函数极限证明

常数a, 都有

则称a是函数当点趋于点 或 或

趋于点时的极限,记作。的方式无关,即不,当(即)时,在点的某邻域内或 必须注意这个极限值与点 论p以什么方

向和路径(也可是跳跃式地,忽上忽下地)趋向

分接近,就能使。只要p与充与a接近到预先任意指定的程度。注意:点p趋于点点方式可有无穷多

种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。图8-7 同样我们可用归结原则,若发现点p按两个特殊的路径趋于点时, 极限 在该点

存在,但不相等,则可以判定元函数极限不存在的重要方法之一。极限不存在。这是判断多

20 / 29

二元函数极限证明

一元函数极限中除了单调有界定理外,其余的有关性质和结论,在二元函数极

限理论中都适用,在这里就不一一赘述了。例如若 有 ,其中。

求多元函数的极限,一般都是转化为一元函数的极限来求,或利用夹逼定理

来计算。例4求。解由于 , 而,根据夹逼定理知 ,所以。a≠0)。解 例 求(。例6求。解

21 / 29

二元函数极限证明

由于理知

且,所以根据夹逼定.例7 研究函数 在点

处极限是否存在。解当x2 +y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于(0,0)的极限,有值,可得到不同的极限值,所以极限 不存在,但,。很显然,对于不同的k。

注意:极限方式的 的区别,前面两个求

本质是两次求一元函数的极限,我们称为累次极限,而最后一个是求二元函数的极限,我们称为求二重极限。例8 设函数极限都不存在,因 为对任何

22 / 29

二元函数极限证明,当 时 ,。它关于原点的两个累次 的第二项不存在极限;同理对任何 时,的第一项也不存在极限, 但是因此。

由例7知,两次累次极限存在,但二重极限不存在。由例8可知,二重极限存

在,但二个累次极限不存在。我们有下面的结果:定理1若累次极限

都存在,则

三者相等(证明略)。推论 若但不相等, 则二重极限 不 存在 和二重极 限

23 / 29

二元函数极限证明, 由于 , 存在。定义设

在点的某邻域内有意义, 且称 函 数 ,则 在 点 处 连 续 , 记

上式称为函数(值)的全增量。则。

24 / 29

二元函数极限证明

定义 增量。

为函数(值)对x的偏 二元函数连续的定义可写为 偏增量。若 断点,若 在点

为函数(值)对y的 处不连续, 则称点 是 的间 在某区域

在区域g上连续。若 在闭区域g g上每一点都连续,则称的每一内点都连续,并在g的连界点 处成立 , 则称

25 / 29

二元函数极限证明

为连续曲面。

在闭域g上连续。闭域上连续的二元函数的图形称

关于一元函数连续的有关性质,如最值定理、介值定理、cantor 定理,对于

二元函数也相应成立。可以证明如下的重要结果:定理2设 在平面有界闭区域g上连续,则

(1)必在g上取到最大值,最小值及其中间的一切值;(2),当 时,都有

。以上关于二元函数的 在g上一致连续,即

极限和连续的有关性质和结论在n元函数中仍然成立。函数极限的证明(一)时函数的极限: 以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.26 / 29

二元函数极限证明

例1验证例2验证例3验证证……(二)时函数的极限: 由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由= 为使需有为使需有于是,倘限制,就有 例7验证例8验证(类似有(三)单侧极限: 1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系: th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有 =§2函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不

教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。

27 / 29 等式性质以及有理运算性等。二元函数极限证明

教学方法:讲练结合。一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性: 2.局部有界性: 3.局部保号性: 4.单调性(不等式性质): th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)註:若在th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性: 6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限: (注意前四个极限中极限就是函数值)这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.28 / 29

二元函数极限证明

例1(利用极限和)例2例3註:关于的有理分式当时的极限.例4 例5例6例7 函数极限证明 函数极限的性质证明 函数极限的定义证明 利用函数极限定义证明11 用定义证明函数极限方法总结29 / 29

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 精品推荐
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么问题来了,教案应该怎么写?以下是小编为大家收集的教案范文,仅供参考,大家一
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
为了确保我们的努力取得实效,就不得不需要事先制定方案,方案是书面计划,具有内容条理清楚、步骤清晰的特点。那么我们该如何写一篇较为完美的方案呢?下面是小编为大家收
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小
总结是对过去的一种回顾,同时也是对未来的一种规划和指导。写总结时,还可以请教他人的意见和建议,从不同的角度和视角来审视和改进自己的总结作品。以下是小编为大家整理
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?那么下面我就给大家讲一讲教案怎么写才比较好,我们一
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。写计划的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编整理
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?又该怎么写呢?这里我给大家分享一些最新的教案范文,方便大家
有时候,人们总会感到迷茫和困惑,需要一份给予启示的话语。总结要简明扼要,不要重复和啰嗦。感恩是一种美德,我们应该常怀感恩之心,感激身边的一切。分数与除法篇一单元
总结可以让我们更好地认识自己,找到问题所在,并且提出解决方案。写总结需要注重文字的美感和语言的准确性,力求语句通顺、层次分明。以下是一些可行的环保实践,希望能引
总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。优秀的总结都具备一些什么特点呢?又该怎么写呢?下面是小编整理的个人今
确定目标是置顶工作方案的重要环节。在公司计划开展某项工作的时候,我们需要为领导提供多种工作方案。优秀的方案都具备一些什么特点呢?又该怎么写呢?以下是我给大家收集
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
星星和星座是天文学中的基本概念,了解它们可以使我们更好地观测和认识宇宙。可以通过提出问题的方式来激发读者对总结内容的思考。在阅读这些总结范文时,我们可以思考如何
为了确保事情或工作有序有效开展,通常需要提前准备好一份方案,方案属于计划类文书的一种。大家想知道怎么样才能写一篇比较优质的方案吗?以下是小编精心整理的方案策划范
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
报告,汉语词语,公文的一种格式,是指对上级有所陈请或汇报时所作的口头或书面的陈述。那么什么样的报告才是有效的呢?下面是小编带来的优秀报告范文,希望大家能够喜欢!
通过总结,我们可以更清晰地认识自己,找到提升的方向。总结要具备客观性,避免主观感情和个人偏见的影响。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下
“报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以
“报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以
在现在社会,报告的用途越来越大,要注意报告在写作时具有一定的格式。那么,报告到底怎么写才合适呢?下面是小编带来的优秀报告范文,希望大家能够喜欢!大学生饮料消费调
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是我为大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文
工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?以下是
时间就如同白驹过隙般的流逝,我们的工作与生活又进入新的阶段,为了今后更好的发展,写一份计划,为接下来的学习做准备吧!计划怎么写才能发挥它最大的作用呢?下面是小编
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?
上半年的绩效总结表明,我们需要加强自我学习和提升能力。引用相关理论知识,提升总结的深度和广度。某学术机构总结了一项重要研究项目的成果,供同行们参考学习。小学感谢
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给
我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。大家想知道怎么样才能写得一篇好的心得体会吗?下面我给大家整理了一些心得
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。我们该怎么拟定计划呢?以下我给大家整理了一些优质的计
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?下面是我给大家整理的计划范文,欢迎
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。写总结的时候需要注意什么呢?有哪些格式需要
体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。我们如何才能写得一篇优质的心得体会呢?下面我给大家整理了一些心得体会范
光阴的迅速,一眨眼就过去了,很快就要开展新的工作了,来为今后的学习制定一份计划。大家想知道怎么样才能写一篇比较优质的计划吗?这里给大家分享一些最新的计划书范文,
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?以下是小编收集整理的教案范文,
工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践
工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践
写一份总结可以帮助我们更好地总结经验教训,为将来的工作做好准备。总结的文字要简练明了,突出重点,同时要注意语言的准确性和流畅性。这里给大家分享一些优秀总结范文,
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看
通过总结,我们能够更好地把握问题的本质和解决方向。在写总结时,我们应该关注事实和数据,尽量客观地进行分析和评价,避免主观臆断。通过阅读一些优秀的总结范文,我们可
计划可以帮助我们在时间和资源有限的情况下,更好地安排和利用。制定计划时要遵循SMART原则,即目标要具体、可衡量、可实现、有关联性和有时限。请参考以下的计划范文
通过总结,我们可以发现自己在某些方面的不足,从而更好地规划未来的发展方向。在总结的过程中,要注重客观性,全面地反映事实,不夸大和缩小事实。以下是一些经典总结例句
方案是从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划。方案能够帮助到我们很多,所以方案到底该怎么写才好呢?下面是小编精心整理的方案策划
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。认识钟表试卷分析篇
计划是提高工作与学习效率的一个前提。做好一个完整的工作计划,才能使工作与学习更加有效的快速的完成。写计划的时候需要注意什么呢?有哪些格式需要注意呢?这里给大家分
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。认
健康是人们追求的一种宝贵财富,我们应该养成良好的生活习惯。总结时如何平衡客观陈述和主观评价?以下是小编为大家选择的旅游景点,希望大家能在旅途中留下美好回忆。认识
无论是喜悦还是痛苦,都是成长的催化剂。总结应该紧扣主题,结构清晰,逻辑有序,语言简练。如果你需要一些总结的范例,以下是小编为大家搜集的一些总结样本,仅供参考。乘
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。优质的心得体会该怎么样去写呢?以下是小编帮大家整理的心得体
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面小编给大家带来关
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧电工技师履
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。总经理岗位职责及能力要
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧对外
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编为大家收集的优
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面是小编为大家
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编带
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?下面是小编整理的优秀教案范文,欢迎阅读分享,希望
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。大家想知道怎么样才能写一篇比较优质的教案吗?那么下面我就给大家讲一讲教案怎么写才比较好,我
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么我们该如何写一篇较为完美的教案呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。落花生教学设
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?接下来小编就给大
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下
通过总结,我们可以发现自己的优点和不足,为进步做好准备。在写总结的时候,首先要明确总结的目的和对象,确定总结的范围和内容。下文是一些值得一读的示例,希望对大家有
当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集
当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,
我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。我们如何才能写得一篇优质的心得体会呢?下
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以
文化遗产的保护和传承是传统文化薪火相传的重要保障。概括是通过提取事物的本质或核心特点,进行简要归纳和总结的过程。每个人都有自己的长处和优势,我们要发挥自己的特长
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?这里我整理了一
a.付费复制
付费获得该文章复制权限
特价:2.99元 10元
微信扫码支付
b.包月复制
付费后30天内不限量复制
特价:6.66元 10元
微信扫码支付
联系客服